Symmetry-protected topological phases, conformal criticalities, and duality in exactly solvable SO($n$) spin chains
- URL: http://arxiv.org/abs/2305.03398v3
- Date: Sun, 10 Nov 2024 22:06:30 GMT
- Title: Symmetry-protected topological phases, conformal criticalities, and duality in exactly solvable SO($n$) spin chains
- Authors: Sreejith Chulliparambil, Hua-Chen Zhang, Hong-Hao Tu,
- Abstract summary: We introduce a family of SO($n$)-symmetric spin chains which generalize the transverse-field Ising chain for $n=1$.
Their phase diagrams include a critical point described by the $mathrmSpin(n)_1$ conformal field theory.
- Score: 0.0
- License:
- Abstract: We introduce a family of SO($n$)-symmetric spin chains which generalize the transverse-field Ising chain for $n=1$. These spin chains are defined with Gamma matrices and can be exactly solved by mapping to $n$ species of itinerant Majorana fermions coupled to a static $\mathbb{Z}_2$ gauge field. Their phase diagrams include a critical point described by the $\mathrm{Spin}(n)_{1}$ conformal field theory as well as two distinct gapped phases. We show that one of the gapped phases is a trivial phase and the other realizes a symmetry-protected topological phase when $n \geq 2$. These two gapped phases are proved to be related to each other by a Kramers-Wannier duality. Furthermore, other elegant structures in the transverse-field Ising chain, such as the infinite-dimensional Onsager algebra, also carry over to our models.
Related papers
- Exactly solvable models for fermionic symmetry-enriched topological phases and fermionic 't Hooft anomaly [33.49184078479579]
The interplay between symmetry and topological properties plays a very important role in modern physics.
How to realize all these fermionic SET (fSET) phases in lattice models remains to be a difficult open problem.
arXiv Detail & Related papers (2024-10-24T19:52:27Z) - Strong-to-weak spontaneous symmetry breaking meets average symmetry-protected topological order [17.38734393793605]
We propose a new class of phases, termed the double ASPT phase, which emerges from a nontrivial extension of these two orders.
This new phase is absent from prior studies and cannot exist in conventional closed systems.
arXiv Detail & Related papers (2024-10-17T16:36:53Z) - SO(n) AKLT Chains as Symmetry Protected Topological Quantum Ground States [0.0]
This thesis studies a pair of symmetry protected topological (SPT) phases which arise when considering one-dimensional quantum spin systems.
We present new results describing their ground state structure and, when $n$ is even, their peculiar $O(n)$-to-$SO(n)$ symmetry breaking.
We extend Ogata's definition of an SPT index for a split state for a finite symmetry group $G$ to an SPT index for a compact Lie group $G$.
arXiv Detail & Related papers (2024-03-15T01:22:49Z) - Emergence of non-Abelian SU(2) invariance in Abelian frustrated
fermionic ladders [37.69303106863453]
We consider a system of interacting spinless fermions on a two-leg triangular ladder with $pi/2$ magnetic flux per triangular plaquette.
Microscopically, the system exhibits a U(1) symmetry corresponding to the conservation of total fermionic charge, and a discrete $mathbbZ$ symmetry.
At the intersection of the three phases, the system features a critical point with an emergent SU(2) symmetry.
arXiv Detail & Related papers (2023-05-11T15:57:27Z) - Exact solution of a non-Hermitian $\mathscr{PT}$-symmetric Heisenberg
spin chain [0.0]
We construct the exact solution of a non-Hermitian $mathscrPT$-symmetric isotropic Heisenberg spin chain with integrable boundary fields.
We find that both $A$ and $B$ type phases can be further divided into sub-phases which exhibit different ground states.
arXiv Detail & Related papers (2023-01-15T02:32:44Z) - Quantum phase transitions in non-Hermitian
$\mathcal{P}\mathcal{T}$-symmetric transverse-field Ising spin chains [0.0]
We present a theoretical study of quantum phases and quantum phase transitions occurring in non-Hermitian $mathcalPmathcalT$-symmetric superconducting qubits chains.
A non-Hermitian part of the Hamiltonian is implemented via imaginary staggered textitlongitudinal magnetic field.
We obtain two quantum phases for $J0$, namely, $mathcalPmathcalT$-symmetry broken antiferromagnetic state and $mathcalPmathcalT$-symmetry preserved paramagnetic state
arXiv Detail & Related papers (2022-11-01T18:10:12Z) - Duality, Criticality, Anomaly, and Topology in Quantum Spin-1 Chains [15.795926248847026]
We argue that a model with self-duality (i.e., invariant under $U_textKT$) is natural to be at a critical or multicritical point.
In particular, when $H$ is the Hamiltonian of the spin-1 antiferromagnetic Heisenberg chain, we prove that the self-dual model $H + U_textKT$ is exactly equivalent to a gapless spin-$1/2$ XY chain.
arXiv Detail & Related papers (2022-03-29T17:50:16Z) - Towards a complete classification of non-chiral topological phases in 2D fermion systems [29.799668287091883]
We argue that all non-chiral fermionic topological phases in 2+1D are characterized by a set of tensors $(Nij_k,Fij_k,Fijm,alphabeta_kln,chidelta,n_i,d_i)$.
Several examples with q-type anyon excitations are discussed, including the Fermionic topological phase from Tambara-gami category for $mathbbZ_2N$.
arXiv Detail & Related papers (2021-12-12T03:00:54Z) - Classification of (2+1)D invertible fermionic topological phases with
symmetry [2.74065703122014]
We classify invertible fermionic topological phases of interacting fermions with symmetry in two spatial dimensions for general fermionic symmetry groups $G_f$.
Our results also generalize and provide a different approach to the recent classification of fermionic symmetry-protected topological phases by Wang and Gu.
arXiv Detail & Related papers (2021-09-22T21:02:07Z) - Boundary time crystals in collective $d$-level systems [64.76138964691705]
Boundary time crystals are non-equilibrium phases of matter occurring in quantum systems in contact to an environment.
We study BTC's in collective $d$-level systems, focusing in the cases with $d=2$, $3$ and $4$.
arXiv Detail & Related papers (2021-02-05T19:00:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.