論文の概要: Protein Structure and Sequence Generation with Equivariant Denoising
Diffusion Probabilistic Models
- arxiv url: http://arxiv.org/abs/2205.15019v1
- Date: Thu, 26 May 2022 16:10:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-31 17:59:17.581371
- Title: Protein Structure and Sequence Generation with Equivariant Denoising
Diffusion Probabilistic Models
- Title(参考訳): 等変分拡散確率モデルによるタンパク質の構造と配列生成
- Authors: Namrata Anand, Tudor Achim
- Abstract要約: バイオエンジニアリングにおける重要な課題は、特定の3D構造と標的機能を可能にする化学的性質を持つタンパク質を設計することである。
タンパク質の構造と配列の両方の生成モデルを導入し、従来の分子生成モデルよりもはるかに大きなスケールで操作できる。
- 参考スコア(独自算出の注目度): 3.5450828190071646
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Proteins are macromolecules that mediate a significant fraction of the
cellular processes that underlie life. An important task in bioengineering is
designing proteins with specific 3D structures and chemical properties which
enable targeted functions. To this end, we introduce a generative model of both
protein structure and sequence that can operate at significantly larger scales
than previous molecular generative modeling approaches. The model is learned
entirely from experimental data and conditions its generation on a compact
specification of protein topology to produce a full-atom backbone configuration
as well as sequence and side-chain predictions. We demonstrate the quality of
the model via qualitative and quantitative analysis of its samples. Videos of
sampling trajectories are available at https://nanand2.github.io/proteins .
- Abstract(参考訳): タンパク質は、生命を支える細胞過程のかなりの一部を媒介する高分子である。
バイオエンジニアリングにおける重要な課題は、特定の3D構造と標的機能を可能にする化学的性質を持つタンパク質を設計することである。
この目的のために,従来の分子生成モデル法よりもかなり大きなスケールで機能するタンパク質構造と配列の生成モデルを提案する。
モデルは完全に実験データから学習され、タンパク質トポロジーのコンパクトな仕様に基づいて生成し、全原子のバックボーン構成とシーケンスとサイドチェーン予測を生成する。
サンプルの質的,定量的な分析により,モデルの品質を実証する。
サンプルトラジェクトリのビデオはhttps://nanand2.github.io/ proteinsで公開されている。
関連論文リスト
- SFM-Protein: Integrative Co-evolutionary Pre-training for Advanced Protein Sequence Representation [97.99658944212675]
タンパク質基盤モデルのための新しい事前学習戦略を導入する。
アミノ酸残基間の相互作用を強調し、短距離および長距離の共進化的特徴の抽出を強化する。
大規模タンパク質配列データセットを用いて学習し,より優れた一般化能力を示す。
論文 参考訳(メタデータ) (2024-10-31T15:22:03Z) - Protein Conformation Generation via Force-Guided SE(3) Diffusion Models [48.48934625235448]
新しいタンパク質コンホメーションを生成するために、深層生成モデリング技術が用いられている。
本稿では,タンパク質コンフォメーション生成のための力誘導SE(3)拡散モデルConfDiffを提案する。
論文 参考訳(メタデータ) (2024-03-21T02:44:08Z) - Functional Geometry Guided Protein Sequence and Backbone Structure
Co-Design [12.585697288315846]
本稿では,自動検出機能部位に基づくタンパク質配列と構造を共同設計するモデルを提案する。
NAEProは、全シーケンスでグローバルな相関を捉えることができる、注目層と同変層のインターリービングネットワークによって駆動される。
実験結果から,本モデルは全競技種の中で,最高アミノ酸回収率,TMスコア,最低RMSDを実現していることがわかった。
論文 参考訳(メタデータ) (2023-10-06T16:08:41Z) - A Latent Diffusion Model for Protein Structure Generation [50.74232632854264]
本稿では,タンパク質モデリングの複雑さを低減できる潜在拡散モデルを提案する。
提案手法は, 高い設計性と効率性を有する新規なタンパク質のバックボーン構造を効果的に生成できることを示す。
論文 参考訳(メタデータ) (2023-05-06T19:10:19Z) - Protein Sequence and Structure Co-Design with Equivariant Translation [19.816174223173494]
既存のアプローチは自己回帰モデルまたは拡散モデルを用いてタンパク質配列と構造の両方を生成する。
本稿では,タンパク質配列と構造共設計が可能な新しいアプローチを提案する。
我々のモデルは、幾何学的制約と文脈特徴からの相互作用を推論する三角法を意識したエンコーダで構成されている。
全てのタンパク質アミノ酸は翻訳工程で1ショットずつ更新され、推論プロセスが大幅に加速される。
論文 参考訳(メタデータ) (2022-10-17T06:00:12Z) - State-specific protein-ligand complex structure prediction with a
multi-scale deep generative model [68.28309982199902]
タンパク質-リガンド複合体構造を直接予測できる計算手法であるNeuralPLexerを提案する。
我々の研究は、データ駆動型アプローチがタンパク質と小分子の構造的協調性を捉え、酵素や薬物分子などの設計を加速させる可能性を示唆している。
論文 参考訳(メタデータ) (2022-09-30T01:46:38Z) - Learning Geometrically Disentangled Representations of Protein Folding
Simulations [72.03095377508856]
この研究は、薬物標的タンパク質の構造的アンサンブルに基づいて生成ニューラルネットワークを学習することに焦点を当てている。
モデル課題は、様々な薬物分子に結合したタンパク質の構造的変動を特徴付けることである。
その結果,我々の幾何学的学習に基づく手法は,複雑な構造変化を生成するための精度と効率の両方を享受できることがわかった。
論文 参考訳(メタデータ) (2022-05-20T19:38:00Z) - Protein model quality assessment using rotation-equivariant,
hierarchical neural networks [8.373439916313018]
本稿では,タンパク質モデルの品質を評価するための新しい深層学習手法を提案する。
提案手法は,最近のCASPラウンドに投入されたタンパク質モデルを評価することによって,最先端の成果を得る。
論文 参考訳(メタデータ) (2020-11-27T05:03:53Z) - BERTology Meets Biology: Interpreting Attention in Protein Language
Models [124.8966298974842]
注目レンズを用いたタンパク質トランスフォーマーモデルの解析方法を示す。
注意はタンパク質の折りたたみ構造を捉え、基礎となる配列では遠く離れているが、三次元構造では空間的に近接しているアミノ酸を接続する。
また、注意とタンパク質構造との相互作用を三次元的に可視化する。
論文 参考訳(メタデータ) (2020-06-26T21:50:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。