論文の概要: From thermodynamics to protein design: Diffusion models for biomolecule generation towards autonomous protein engineering
- arxiv url: http://arxiv.org/abs/2501.02680v1
- Date: Sun, 05 Jan 2025 22:36:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:08:02.015692
- Title: From thermodynamics to protein design: Diffusion models for biomolecule generation towards autonomous protein engineering
- Title(参考訳): 熱力学からタンパク質設計へ:生体分子生成の拡散モデルから自律的タンパク質工学へ
- Authors: Wen-ran Li, Xavier F. Cadet, David Medina-Ortiz, Mehdi D. Davari, Ramanathan Sowdhamini, Cedric Damour, Yu Li, Alain Miranville, Frederic Cadet,
- Abstract要約: まず拡散モデルの定義と特徴を述べ,拡散確率モデルとスコアベース生成モデルという2つの戦略に焦点をあてる。
タンパク質設計、ペプチド生成、薬物発見、タンパク質-リガンド相互作用におけるそれらの応用について論じる。
- 参考スコア(独自算出の注目度): 8.173909751137888
- License:
- Abstract: Protein design with desirable properties has been a significant challenge for many decades. Generative artificial intelligence is a promising approach and has achieved great success in various protein generation tasks. Notably, diffusion models stand out for their robust mathematical foundations and impressive generative capabilities, offering unique advantages in certain applications such as protein design. In this review, we first give the definition and characteristics of diffusion models and then focus on two strategies: Denoising Diffusion Probabilistic Models and Score-based Generative Models, where DDPM is the discrete form of SGM. Furthermore, we discuss their applications in protein design, peptide generation, drug discovery, and protein-ligand interaction. Finally, we outline the future perspectives of diffusion models to advance autonomous protein design and engineering. The E(3) group consists of all rotations, reflections, and translations in three-dimensions. The equivariance on the E(3) group can keep the physical stability of the frame of each amino acid as much as possible, and we reflect on how to keep the diffusion model E(3) equivariant for protein generation.
- Abstract(参考訳): 望ましい性質を持つタンパク質の設計は、何十年にもわたって重要な課題であった。
生成的人工知能は有望なアプローチであり、様々なタンパク質生成タスクで大きな成功を収めてきた。
特に、拡散モデルは、堅牢な数学的基礎と印象的な生成能力で際立っている。
本稿ではまず拡散モデルの定義と特性について述べ,拡散確率モデルとスコアベース生成モデルという2つの戦略に注目し,DDPMをSGMの離散形式とする。
さらに、タンパク質設計、ペプチド生成、薬物発見、タンパク質-リガンド相互作用におけるそれらの応用について論じる。
最後に,タンパク質設計・工学の進歩に向けた拡散モデルの将来展望について概説する。
E(3) 群は3次元の全ての回転、反射、翻訳からなる。
E(3) 群の等式は、各アミノ酸のフレームの物理的安定性を極力維持することができ、タンパク質生成の拡散モデル E(3) の等式をいかに維持するかを考察する。
関連論文リスト
- SFM-Protein: Integrative Co-evolutionary Pre-training for Advanced Protein Sequence Representation [97.99658944212675]
タンパク質基盤モデルのための新しい事前学習戦略を導入する。
アミノ酸残基間の相互作用を強調し、短距離および長距離の共進化的特徴の抽出を強化する。
大規模タンパク質配列データセットを用いて学習し,より優れた一般化能力を示す。
論文 参考訳(メタデータ) (2024-10-31T15:22:03Z) - Structure Language Models for Protein Conformation Generation [66.42864253026053]
伝統的な物理学に基づくシミュレーション手法は、しばしばサンプリング平衡整合に苦しむ。
深い生成モデルは、より効率的な代替としてタンパク質のコンホメーションを生成することを約束している。
本稿では,効率的なタンパク質コンホメーション生成のための新しいフレームワークとして構造言語モデリングを紹介する。
論文 参考訳(メタデータ) (2024-10-24T03:38:51Z) - Protein Conformation Generation via Force-Guided SE(3) Diffusion Models [48.48934625235448]
新しいタンパク質コンホメーションを生成するために、深層生成モデリング技術が用いられている。
本稿では,タンパク質コンフォメーション生成のための力誘導SE(3)拡散モデルConfDiffを提案する。
論文 参考訳(メタデータ) (2024-03-21T02:44:08Z) - Diffusion on language model embeddings for protein sequence generation [0.5442686600296733]
連続拡散を利用したアミノ酸配列生成モデルであるDiMAを導入する。
優れたパフォーマンスをもたらす設計選択の影響を定量的に説明します。
我々のアプローチは、タンパク質空間の構造的および機能的多様性を正確に反映する、新規で多様なタンパク質配列を一貫して生成する。
論文 参考訳(メタデータ) (2024-03-06T14:15:20Z) - Diffusion Language Models Are Versatile Protein Learners [75.98083311705182]
本稿では,タンパク質配列の強い生成および予測能力を示す多目的なタンパク質言語モデルである拡散タンパク質言語モデル(DPLM)を紹介する。
まず, 自己制御型離散拡散確率フレームワークを用いて, 進化的タンパク質配列からのスケーラブルDPLMの事前学習を行った。
プレトレーニング後、DPLMは非条件生成のための構造的に可塑性で新規で多様なタンパク質配列を生成する能力を示す。
論文 参考訳(メタデータ) (2024-02-28T18:57:56Z) - A Latent Diffusion Model for Protein Structure Generation [50.74232632854264]
本稿では,タンパク質モデリングの複雑さを低減できる潜在拡散モデルを提案する。
提案手法は, 高い設計性と効率性を有する新規なタンパク質のバックボーン構造を効果的に生成できることを示す。
論文 参考訳(メタデータ) (2023-05-06T19:10:19Z) - Plug & Play Directed Evolution of Proteins with Gradient-based Discrete
MCMC [1.0499611180329804]
機械学習ベースのタンパク質工学の長年の目標は、新しい突然変異の発見を加速することである。
本稿では,シリコにおけるタンパク質の進化のためのサンプリングフレームワークについて紹介する。
これらのモデルを構成することで、未知の突然変異を評価し、機能的タンパク質を含む可能性のある配列空間の領域を探索する能力を向上させることを目指している。
論文 参考訳(メタデータ) (2022-12-20T00:26:23Z) - Protein Structure and Sequence Generation with Equivariant Denoising
Diffusion Probabilistic Models [3.5450828190071646]
バイオエンジニアリングにおける重要な課題は、特定の3D構造と標的機能を可能にする化学的性質を持つタンパク質を設計することである。
タンパク質の構造と配列の両方の生成モデルを導入し、従来の分子生成モデルよりもはるかに大きなスケールで操作できる。
論文 参考訳(メタデータ) (2022-05-26T16:10:09Z) - Learning Geometrically Disentangled Representations of Protein Folding
Simulations [72.03095377508856]
この研究は、薬物標的タンパク質の構造的アンサンブルに基づいて生成ニューラルネットワークを学習することに焦点を当てている。
モデル課題は、様々な薬物分子に結合したタンパク質の構造的変動を特徴付けることである。
その結果,我々の幾何学的学習に基づく手法は,複雑な構造変化を生成するための精度と効率の両方を享受できることがわかった。
論文 参考訳(メタデータ) (2022-05-20T19:38:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。