論文の概要: Protein Conformation Generation via Force-Guided SE(3) Diffusion Models
- arxiv url: http://arxiv.org/abs/2403.14088v2
- Date: Tue, 24 Sep 2024 09:37:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-09 03:59:23.076056
- Title: Protein Conformation Generation via Force-Guided SE(3) Diffusion Models
- Title(参考訳): フォースガイドSE(3)拡散モデルによるタンパク質のコンフォーメーション生成
- Authors: Yan Wang, Lihao Wang, Yuning Shen, Yiqun Wang, Huizhuo Yuan, Yue Wu, Quanquan Gu,
- Abstract要約: 新しいタンパク質コンホメーションを生成するために、深層生成モデリング技術が用いられている。
本稿では,タンパク質コンフォメーション生成のための力誘導SE(3)拡散モデルConfDiffを提案する。
- 参考スコア(独自算出の注目度): 48.48934625235448
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The conformational landscape of proteins is crucial to understanding their functionality in complex biological processes. Traditional physics-based computational methods, such as molecular dynamics (MD) simulations, suffer from rare event sampling and long equilibration time problems, hindering their applications in general protein systems. Recently, deep generative modeling techniques, especially diffusion models, have been employed to generate novel protein conformations. However, existing score-based diffusion methods cannot properly incorporate important physical prior knowledge to guide the generation process, causing large deviations in the sampled protein conformations from the equilibrium distribution. In this paper, to overcome these limitations, we propose a force-guided SE(3) diffusion model, ConfDiff, for protein conformation generation. By incorporating a force-guided network with a mixture of data-based score models, ConfDiff can generate protein conformations with rich diversity while preserving high fidelity. Experiments on a variety of protein conformation prediction tasks, including 12 fast-folding proteins and the Bovine Pancreatic Trypsin Inhibitor (BPTI), demonstrate that our method surpasses the state-of-the-art method.
- Abstract(参考訳): タンパク質のコンフォメーション・ランドスケープは、複雑な生物学的プロセスにおいてその機能を理解するために重要である。
分子動力学(MD)シミュレーションのような伝統的な物理学に基づく計算手法は、まれなイベントサンプリングと長い平衡時間の問題に悩まされ、一般的なタンパク質システムにおけるそれらの応用を妨げる。
近年,新しいタンパク質コンホメーションを生成するために,深層生成モデリング技術,特に拡散モデルが採用されている。
しかし、既存のスコアベースの拡散法は、生成過程を導くために重要な物理的事前知識を適切に組み込むことはできない。
本稿では,これらの制限を克服するために,タンパク質コンホメーション生成のための力誘導SE(3)拡散モデルConfDiffを提案する。
データベースのスコアモデルが混在するフォース誘導ネットワークを組み込むことで、ConfDiffは高い忠実さを維持しながら、豊富な多様性を持つタンパク質コンホメーションを生成することができる。
12個の高速折りたたみタンパク質とBPTIを含む多種多様なタンパク質コンホメーション予測タスクの実験により,本手法が最先端の手法を超越していることが実証された。
関連論文リスト
- SFM-Protein: Integrative Co-evolutionary Pre-training for Advanced Protein Sequence Representation [97.99658944212675]
タンパク質基盤モデルのための新しい事前学習戦略を導入する。
アミノ酸残基間の相互作用を強調し、短距離および長距離の共進化的特徴の抽出を強化する。
大規模タンパク質配列データセットを用いて学習し,より優れた一般化能力を示す。
論文 参考訳(メタデータ) (2024-10-31T15:22:03Z) - Structure Language Models for Protein Conformation Generation [66.42864253026053]
伝統的な物理学に基づくシミュレーション手法は、しばしばサンプリング平衡整合に苦しむ。
深い生成モデルは、より効率的な代替としてタンパク質のコンホメーションを生成することを約束している。
本稿では,効率的なタンパク質コンホメーション生成のための新しいフレームワークとして構造言語モデリングを紹介する。
論文 参考訳(メタデータ) (2024-10-24T03:38:51Z) - Loop-Diffusion: an equivariant diffusion model for designing and scoring protein loops [0.0]
ループ拡散(Loop-Diffusion)は、関数予測タスクに一般化するエネルギー関数を学ぶエネルギーベースの拡散モデルである。
我々は,TCR-pMHCインタフェースの評価におけるLoop-Diffusionの性能を評価し,結合強調突然変異の認識における最先端の結果を示す。
論文 参考訳(メタデータ) (2024-09-26T18:34:06Z) - Diffusion on language model embeddings for protein sequence generation [0.5442686600296733]
連続拡散を利用したアミノ酸配列生成モデルであるDiMAを導入する。
優れたパフォーマンスをもたらす設計選択の影響を定量的に説明します。
我々のアプローチは、タンパク質空間の構造的および機能的多様性を正確に反映する、新規で多様なタンパク質配列を一貫して生成する。
論文 参考訳(メタデータ) (2024-03-06T14:15:20Z) - Efficiently Predicting Mutational Effect on Homologous Proteins by Evolution Encoding [7.067145619709089]
EvolMPNNは進化を意識したタンパク質の埋め込みを学習するための効率的なモデルである。
我々のモデルは最先端の手法よりも最大6.4%向上し,36倍の高速化を実現している。
論文 参考訳(メタデータ) (2024-02-20T23:06:21Z) - Top-down machine learning of coarse-grained protein force-fields [2.1485350418225244]
我々の手法は、タンパク質を分子動力学でシミュレートし、その結果の軌道を利用してニューラルネットワーク電位を訓練することである。
注目すべきは、この方法はタンパク質のネイティブなコンフォメーションのみを必要とし、ラベル付きデータを必要としないことである。
マルコフ状態モデルを適用することで、シミュレーションされたタンパク質のネイティブな構造を粗い粒度のシミュレーションから予測することができる。
論文 参考訳(メタデータ) (2023-06-20T08:31:24Z) - A Latent Diffusion Model for Protein Structure Generation [50.74232632854264]
本稿では,タンパク質モデリングの複雑さを低減できる潜在拡散モデルを提案する。
提案手法は, 高い設計性と効率性を有する新規なタンパク質のバックボーン構造を効果的に生成できることを示す。
論文 参考訳(メタデータ) (2023-05-06T19:10:19Z) - State-specific protein-ligand complex structure prediction with a
multi-scale deep generative model [68.28309982199902]
タンパク質-リガンド複合体構造を直接予測できる計算手法であるNeuralPLexerを提案する。
我々の研究は、データ駆動型アプローチがタンパク質と小分子の構造的協調性を捉え、酵素や薬物分子などの設計を加速させる可能性を示唆している。
論文 参考訳(メタデータ) (2022-09-30T01:46:38Z) - Protein Structure and Sequence Generation with Equivariant Denoising
Diffusion Probabilistic Models [3.5450828190071646]
バイオエンジニアリングにおける重要な課題は、特定の3D構造と標的機能を可能にする化学的性質を持つタンパク質を設計することである。
タンパク質の構造と配列の両方の生成モデルを導入し、従来の分子生成モデルよりもはるかに大きなスケールで操作できる。
論文 参考訳(メタデータ) (2022-05-26T16:10:09Z) - Learning Geometrically Disentangled Representations of Protein Folding
Simulations [72.03095377508856]
この研究は、薬物標的タンパク質の構造的アンサンブルに基づいて生成ニューラルネットワークを学習することに焦点を当てている。
モデル課題は、様々な薬物分子に結合したタンパク質の構造的変動を特徴付けることである。
その結果,我々の幾何学的学習に基づく手法は,複雑な構造変化を生成するための精度と効率の両方を享受できることがわかった。
論文 参考訳(メタデータ) (2022-05-20T19:38:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。