Few Shot Learning for Medical Imaging: A Comparative Analysis of
Methodologies and Formal Mathematical Framework
- URL: http://arxiv.org/abs/2305.04401v2
- Date: Wed, 31 May 2023 16:35:08 GMT
- Title: Few Shot Learning for Medical Imaging: A Comparative Analysis of
Methodologies and Formal Mathematical Framework
- Authors: Jannatul Nayem, Sayed Sahriar Hasan, Noshin Amina, Bristy Das, Md
Shahin Ali, Md Manjurul Ahsan, Shivakumar Raman
- Abstract summary: scarcity of problem-dependent training data has become a larger issue in the way of easy application of deep learning in the medical sector.
Few hot learning algorithms determine to solve the data limitation problems by extracting the characteristics from a small dataset.
In the medical sector, there is frequently a shortage of available datasets in respect of some confidential diseases.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning becomes an elevated context regarding disposing of many machine
learning tasks and has shown a breakthrough upliftment to extract features from
unstructured data. Though this flourishing context is developing in the medical
image processing sector, scarcity of problem-dependent training data has become
a larger issue in the way of easy application of deep learning in the medical
sector. To unravel the confined data source, researchers have developed a model
that can solve machine learning problems with fewer data called ``Few shot
learning". Few hot learning algorithms determine to solve the data limitation
problems by extracting the characteristics from a small dataset through
classification and segmentation methods. In the medical sector, there is
frequently a shortage of available datasets in respect of some confidential
diseases. Therefore, Few shot learning gets the limelight in this data scarcity
sector. In this chapter, the background and basic overview of a few shots of
learning is represented. Henceforth, the classification of few-shot learning is
described also. Even the paper shows a comparison of methodological approaches
that are applied in medical image analysis over time. The current advancement
in the implementation of few-shot learning concerning medical imaging is
illustrated. The future scope of this domain in the medical imaging sector is
further described.
Related papers
- A Systematic Review of Few-Shot Learning in Medical Imaging [1.049712834719005]
Few-shot learning techniques can reduce data scarcity issues and enhance medical image analysis.
This systematic review gives a comprehensive overview of few-shot learning in medical imaging.
arXiv Detail & Related papers (2023-09-20T16:10:53Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Understanding the Tricks of Deep Learning in Medical Image Segmentation:
Challenges and Future Directions [66.40971096248946]
In this paper, we collect a series of MedISeg tricks for different model implementation phases.
We experimentally explore the effectiveness of these tricks on consistent baselines.
We also open-sourced a strong MedISeg repository, where each component has the advantage of plug-and-play.
arXiv Detail & Related papers (2022-09-21T12:30:05Z) - RadTex: Learning Efficient Radiograph Representations from Text Reports [7.090896766922791]
We build a data-efficient learning framework that utilizes radiology reports to improve medical image classification performance with limited labeled data.
Our model achieves higher classification performance than ImageNet-supervised pretraining when labeled training data is limited.
arXiv Detail & Related papers (2022-08-05T15:06:26Z) - Self-Supervised-RCNN for Medical Image Segmentation with Limited Data
Annotation [0.16490701092527607]
We propose an alternative deep learning training strategy based on self-supervised pretraining on unlabeled MRI scans.
Our pretraining approach first, randomly applies different distortions to random areas of unlabeled images and then predicts the type of distortions and loss of information.
The effectiveness of the proposed method for segmentation tasks in different pre-training and fine-tuning scenarios is evaluated.
arXiv Detail & Related papers (2022-07-17T13:28:52Z) - Learn to Ignore: Domain Adaptation for Multi-Site MRI Analysis [1.3079444139643956]
We present a novel method that learns to ignore the scanner-related features present in the images, while learning features relevant for the classification task.
Our method outperforms state-of-the-art domain adaptation methods on a classification task between Multiple Sclerosis patients and healthy subjects.
arXiv Detail & Related papers (2021-10-13T15:40:50Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
The shortage of annotated medical images is one of the biggest challenges in the field of medical image computing.
In this paper, we develop a novel generative method named generative adversarial U-Net.
Our newly designed model is domain-free and generalizable to various medical images.
arXiv Detail & Related papers (2021-01-12T23:02:26Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
We propose Vicinal Labels Under Uncertainty (VLUU) to bridge the methodological gaps in partially supervised learning (PSL) under data scarcity.
Motivated by multi-task learning and vicinal risk minimization, VLUU transforms the partially supervised problem into a fully supervised problem by generating vicinal labels.
Our research suggests a new research direction in label-efficient deep learning with partial supervision.
arXiv Detail & Related papers (2020-11-28T16:31:00Z) - Medical Image Harmonization Using Deep Learning Based Canonical Mapping:
Toward Robust and Generalizable Learning in Imaging [4.396671464565882]
We propose a new paradigm in which data from a diverse range of acquisition conditions are "harmonized" to a common reference domain.
We test this approach on two example problems, namely MRI-based brain age prediction and classification of schizophrenia.
arXiv Detail & Related papers (2020-10-11T22:01:37Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
We propose a novel scheme of Cross-Attention Networks (CAN) for automated thoracic disease classification from chest x-ray images.
We also design a new loss function that beyond cross-entropy loss to help cross-attention process and is able to overcome the imbalance between classes and easy-dominated samples within each class.
arXiv Detail & Related papers (2020-07-21T14:37:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.