論文の概要: The Signature Kernel
- arxiv url: http://arxiv.org/abs/2305.04625v1
- Date: Mon, 8 May 2023 11:05:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-09 14:38:17.813546
- Title: The Signature Kernel
- Title(参考訳): 署名カーネル
- Authors: Darrick Lee, Harald Oberhauser
- Abstract要約: シグネチャカーネルは、シーケンシャルデータに対する正定値カーネルである。
理論的な保証を解析から受け継ぎ、効率的な計算アルゴリズムを持ち、強力な経験的性能を示す。
- 参考スコア(独自算出の注目度): 10.228984414156933
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The signature kernel is a positive definite kernel for sequential data. It
inherits theoretical guarantees from stochastic analysis, has efficient
algorithms for computation, and shows strong empirical performance. In this
short survey paper for a forthcoming Springer handbook, we give an elementary
introduction to the signature kernel and highlight these theoretical and
computational properties.
- Abstract(参考訳): シグネチャカーネルは、シーケンシャルデータに対する正定値カーネルである。
確率解析から理論的保証を継承し、効率的な計算アルゴリズムを持ち、強い経験的性能を示す。
近日発売予定のSpringerハンドブックの簡単な調査論文で,シグネチャカーネルの基本的紹介を行い,これらの理論的および計算的性質を強調した。
関連論文リスト
- The Foundations of Tokenization: Statistical and Computational Concerns [51.370165245628975]
トークン化は、NLPパイプラインにおける重要なステップである。
NLPにおける標準表現法としての重要性は認識されているが、トークン化の理論的基盤はまだ完全には理解されていない。
本稿では,トークン化モデルの表現と解析のための統一的な形式的枠組みを提案することによって,この理論的ギャップに対処することに貢献している。
論文 参考訳(メタデータ) (2024-07-16T11:12:28Z) - Random Fourier Signature Features [8.766411351797885]
代数はシグネチャカーネルと呼ばれる任意の長さの列の類似性の最も強力な尺度の1つを生み出す。
署名カーネルのスケールを、配列の長さと数で2次的に計算する以前のアルゴリズム。
本研究では,非ユークリッド領域に作用するシグネチャカーネルのランダムなフーリエ特徴量に基づくアクセラレーションを開発する。
論文 参考訳(メタデータ) (2023-11-20T22:08:17Z) - An Exact Kernel Equivalence for Finite Classification Models [1.4777718769290527]
我々は、その正確な表現をよく知られたニューラルタンジェントカーネル(NTK)と比較し、NTKに対する近似誤差について議論する。
この正確なカーネルを使って、ニューラルネットワークによる予測について、理論的貢献が有益な洞察を提供することを示す。
論文 参考訳(メタデータ) (2023-08-01T20:22:53Z) - Isotropic Gaussian Processes on Finite Spaces of Graphs [71.26737403006778]
種々の非重み付きグラフの集合上でガウス過程の先行を定義するための原理的手法を提案する。
さらに、未重み付きグラフの同値類の集合を検討し、それに対する事前の適切なバージョンを定義する。
化学の応用に触発されて、我々は、小データ構造における実際の分子特性予測タスクについて、提案手法を解説した。
論文 参考訳(メタデータ) (2022-11-03T10:18:17Z) - Meta-Learning Hypothesis Spaces for Sequential Decision-making [79.73213540203389]
オフラインデータ(Meta-KeL)からカーネルをメタ学習することを提案する。
穏やかな条件下では、推定されたRKHSが有効な信頼セットを得られることを保証します。
また,ベイズ最適化におけるアプローチの有効性を実証的に評価した。
論文 参考訳(メタデータ) (2022-02-01T17:46:51Z) - Hida-Mat\'ern Kernel [8.594140167290098]
定常ガウス・マルコフ過程の全空間上の共分散関数の正準族であるヒルダ・マタン核のクラスを示す。
カーネルとそのデリバティブのみを用いて状態空間モデルのようなプロセスを表現する方法を示す。
また,状態空間表現の特殊特性を活用することで,計算複雑性のさらなる低減に加えて,数値安定性の向上がもたらされることを示す。
論文 参考訳(メタデータ) (2021-07-15T03:25:10Z) - Kernel Mean Estimation by Marginalized Corrupted Distributions [96.9272743070371]
カーネル平均をヒルベルト空間で推定することは、多くのカーネル学習アルゴリズムにおいて重要な要素である。
本稿では,カーネル平均推定器としてカーネル平均推定器を提案する。
論文 参考訳(メタデータ) (2021-07-10T15:11:28Z) - Kernel Identification Through Transformers [54.3795894579111]
カーネル選択はガウス過程(GP)モデルの性能決定において中心的な役割を果たす。
この研究は、高次元GP回帰モデルのためのカスタムカーネル関数を構築するという課題に対処する。
KITT: Kernel Identification through Transformersを提案する。
論文 参考訳(メタデータ) (2021-06-15T14:32:38Z) - Flow-based Kernel Prior with Application to Blind Super-Resolution [143.21527713002354]
カーネル推定は一般にブラインド画像超解像(SR)の鍵となる問題の一つである
本稿では,カーネルモデリングのための正規化フローベースカーネルプリレント(fkp)を提案する。
合成および実世界の画像の実験により、提案したFKPがカーネル推定精度を大幅に向上することを示した。
論文 参考訳(メタデータ) (2021-03-29T22:37:06Z) - Tractable Computation of Expected Kernels by Circuits [35.059091080947205]
我々は、期待されるカーネルを正確かつ効率的に計算できる条件を記述する。
次に、扱いやすい期待カーネルを活用して、カーネル組み込みフレームワークの進歩を実証する。
両アルゴリズムを実証的に評価し,各種データセットの標準ベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2021-02-21T08:59:06Z) - Low-dimensional Interpretable Kernels with Conic Discriminant Functions
for Classification [0.0]
カーネルはしばしば、その高次元の特徴空間表現による印象的な予測力を示す暗黙のマッピング関数として開発される。
本研究では,解釈可能な低次元カーネルの集合に繋がる,一連の単純な特徴写像を徐々に構築する。
論文 参考訳(メタデータ) (2020-07-17T13:58:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。