論文の概要: Low-dimensional Interpretable Kernels with Conic Discriminant Functions
for Classification
- arxiv url: http://arxiv.org/abs/2007.08986v1
- Date: Fri, 17 Jul 2020 13:58:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-09 13:11:35.125783
- Title: Low-dimensional Interpretable Kernels with Conic Discriminant Functions
for Classification
- Title(参考訳): 円錐分別関数を用いた低次元解釈可能カーネルの分類
- Authors: Gurhan Ceylan and S. Ilker Birbil
- Abstract要約: カーネルはしばしば、その高次元の特徴空間表現による印象的な予測力を示す暗黙のマッピング関数として開発される。
本研究では,解釈可能な低次元カーネルの集合に繋がる,一連の単純な特徴写像を徐々に構築する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Kernels are often developed and used as implicit mapping functions that show
impressive predictive power due to their high-dimensional feature space
representations. In this study, we gradually construct a series of simple
feature maps that lead to a collection of interpretable low-dimensional
kernels. At each step, we keep the original features and make sure that the
increase in the dimension of input data is extremely low, so that the resulting
discriminant functions remain interpretable and amenable to fast training.
Despite our persistence on interpretability, we obtain high accuracy results
even without in-depth hyperparameter tuning. Comparison of our results against
several well-known kernels on benchmark datasets show that the proposed kernels
are competitive in terms of prediction accuracy, while the training times are
significantly lower than those obtained with state-of-the-art kernel
implementations.
- Abstract(参考訳): カーネルはしばしば、高次元の特徴空間表現のために印象的な予測力を示す暗黙のマッピング関数として開発され使用される。
本研究では,解釈可能な低次元カーネルの集合に繋がる一連の単純な特徴写像を徐々に構築する。
各ステップにおいて、元の特徴を保ち、入力データの次元の増大が極端に低く、その結果の識別関数が解釈可能であり、高速な訓練に有効であることを確認する。
解釈可能性の持続性にも拘わらず、奥行きのハイパーパラメータチューニングなしでも高精度な結果が得られる。
ベンチマークデータセット上のよく知られたカーネルと比較すると,提案したカーネルは予測精度で競合するが,トレーニング時間は最先端のカーネル実装で得られたカーネルに比べて有意に低い。
関連論文リスト
- A Unifying Perspective on Non-Stationary Kernels for Deeper Gaussian Processes [0.9558392439655016]
代表データセットを用いて動作中のさまざまなカーネルを示し、その特性を慎重に研究し、性能を比較する。
そこで本研究では,既存のカーネルの利点を活かしたカーネルを提案する。
論文 参考訳(メタデータ) (2023-09-18T18:34:51Z) - Benign Overfitting in Deep Neural Networks under Lazy Training [72.28294823115502]
データ分布が適切に分離された場合、DNNは分類のためのベイズ最適テスト誤差を達成できることを示す。
よりスムーズな関数との補間により、より一般化できることを示す。
論文 参考訳(メタデータ) (2023-05-30T19:37:44Z) - Joint Embedding Self-Supervised Learning in the Kernel Regime [21.80241600638596]
自己教師付き学習(SSL)は、データを分類するためのラベルにアクセスすることなく、データの有用な表現を生成する。
我々はこのフレームワークを拡張し,カーネルの機能空間に作用する線形写像によって埋め込みを構築するカーネル手法に基づくアルゴリズムを組み込む。
カーネルモデルを小さなデータセットで分析し、自己教師付き学習アルゴリズムの共通特徴を特定し、下流タスクにおける性能に関する理論的洞察を得る。
論文 参考訳(メタデータ) (2022-09-29T15:53:19Z) - Inducing Gaussian Process Networks [80.40892394020797]
本稿では,特徴空間と誘導点を同時に学習するシンプルなフレームワークであるGaussian Process Network (IGN)を提案する。
特に誘導点は特徴空間で直接学習され、複雑な構造化領域のシームレスな表現を可能にする。
実世界のデータセットに対する実験結果から,IGNは最先端の手法よりも大幅に進歩していることを示す。
論文 参考訳(メタデータ) (2022-04-21T05:27:09Z) - On the Benefits of Large Learning Rates for Kernel Methods [110.03020563291788]
本稿では,カーネル手法のコンテキストにおいて,現象を正確に特徴付けることができることを示す。
分離可能なヒルベルト空間における2次対象の最小化を考慮し、早期停止の場合、学習速度の選択が得られた解のスペクトル分解に影響を及ぼすことを示す。
論文 参考訳(メタデータ) (2022-02-28T13:01:04Z) - Meta-Learning Hypothesis Spaces for Sequential Decision-making [79.73213540203389]
オフラインデータ(Meta-KeL)からカーネルをメタ学習することを提案する。
穏やかな条件下では、推定されたRKHSが有効な信頼セットを得られることを保証します。
また,ベイズ最適化におけるアプローチの有効性を実証的に評価した。
論文 参考訳(メタデータ) (2022-02-01T17:46:51Z) - Random Features for the Neural Tangent Kernel [57.132634274795066]
完全接続型ReLUネットワークのニューラルタンジェントカーネル(NTK)の効率的な特徴マップ構築を提案する。
得られた特徴の次元は、理論と実践の両方で比較誤差境界を達成するために、他のベースライン特徴マップ構造よりもはるかに小さいことを示しています。
論文 参考訳(メタデータ) (2021-04-03T09:08:12Z) - Learning Compositional Sparse Gaussian Processes with a Shrinkage Prior [26.52863547394537]
本稿では,カーネル選択のスパーシティをホースシュープリアーで処理することにより,カーネル構成を学習するための新しい確率論的アルゴリズムを提案する。
本モデルは,計算時間を大幅に削減した時系列特性をキャプチャし,実世界のデータセット上での競合回帰性能を有する。
論文 参考訳(メタデータ) (2020-12-21T13:41:15Z) - Sparse Spectrum Warped Input Measures for Nonstationary Kernel Learning [29.221457769884648]
本研究では,非定常カーネルを学習するための明示的,入力に依存した,計測値のワーピングの一般的な形式を提案する。
提案した学習アルゴリズムは、標準定常カーネルの滑らかさを制御する条件付きガウス測度として入力をワープする。
我々は,小・大規模データ体制の学習問題において,ワーピング関数のパラメータ数に顕著な効率性を示す。
論文 参考訳(メタデータ) (2020-10-09T01:10:08Z) - Federated Doubly Stochastic Kernel Learning for Vertically Partitioned
Data [93.76907759950608]
本稿では,垂直分割データに対する2倍のカーネル学習アルゴリズムを提案する。
本稿では,FDSKLがカーネルを扱う場合,最先端のフェデレーション学習手法よりもはるかに高速であることを示す。
論文 参考訳(メタデータ) (2020-08-14T05:46:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。