論文の概要: Explainable Parallel RCNN with Novel Feature Representation for Time
Series Forecasting
- arxiv url: http://arxiv.org/abs/2305.04876v2
- Date: Mon, 26 Jun 2023 17:57:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-27 22:51:06.556813
- Title: Explainable Parallel RCNN with Novel Feature Representation for Time
Series Forecasting
- Title(参考訳): 時系列予測のための新しい特徴表現を用いた説明可能な並列RCNN
- Authors: Jimeng Shi, Rukmangadh Myana, Vitalii Stebliankin, Azam Shirali and
Giri Narasimhan
- Abstract要約: 時系列予測はデータサイエンスにおける根本的な課題である。
RNNとCNNを組み合わせた並列ディープラーニングフレームワークを開発した。
3つのデータセットに対する大規模な実験により,本手法の有効性が明らかとなった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate time series forecasting is a fundamental challenge in data science.
It is often affected by external covariates such as weather or human
intervention, which in many applications, may be predicted with reasonable
accuracy. We refer to them as predicted future covariates. However, existing
methods that attempt to predict time series in an iterative manner with
autoregressive models end up with exponential error accumulations. Other
strategies hat consider the past and future in the encoder and decoder
respectively limit themselves by dealing with the historical and future data
separately. To address these limitations, a novel feature representation
strategy -- shifting -- is proposed to fuse the past data and future covariates
such that their interactions can be considered. To extract complex dynamics in
time series, we develop a parallel deep learning framework composed of RNN and
CNN, both of which are used hierarchically. We also utilize the skip connection
technique to improve the model's performance. Extensive experiments on three
datasets reveal the effectiveness of our method. Finally, we demonstrate the
model interpretability using the Grad-CAM algorithm.
- Abstract(参考訳): データサイエンスにおける正確な時系列予測は根本的な課題である。
天気や人間の介入といった外部の共変量に影響されることが多く、多くの応用において合理的な精度で予測できる。
我々はそれらを予測された未来の共変量と呼ぶ。
しかし、自己回帰モデルを用いて時系列を反復的に予測しようとする既存の手法は、指数関数的なエラー蓄積をもたらす。
他の戦略では、エンコーダとデコーダの過去と未来は、それぞれ、履歴と将来のデータを別々に扱うことで制限される。
これらの制限に対処するために、過去のデータと将来の共変数を融合させ、それらの相互作用を考慮できるように、新しい特徴表現戦略 -- シフト -- が提案されている。
時系列の複雑なダイナミクスを抽出するために,RNNとCNNを組み合わせた並列ディープラーニングフレームワークを開発した。
また、スキップ接続技術を用いてモデルの性能を向上させる。
3つのデータセットに関する広範な実験により,本手法の有効性が明らかになった。
最後に,grad-camアルゴリズムを用いてモデル解釈可能性を示す。
関連論文リスト
- KODA: A Data-Driven Recursive Model for Time Series Forecasting and Data Assimilation using Koopman Operators [14.429071321401953]
非線形力学系における予測とデータ同化を統合したクープマン演算子に基づく手法を提案する。
特に、Fourierドメインフィルタを使用してデータを物理的コンポーネントに切り離し、そのダイナミクスはクープマン演算子によって正確に表現できる。
複数の時系列ベンチマークにおいて,KODAが既存の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-09-29T02:25:48Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
時系列予測は多くのアプリケーションにおいて非常に重要な課題である。
実世界の時系列データが短時間に記録されることが一般的であり、これはディープモデルと限られたノイズのある時系列との間に大きなギャップをもたらす。
本稿では,生成モデルを用いた時系列予測問題に対処し,拡散,雑音,ゆがみを備えた双方向変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2023-01-08T12:20:46Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - Probabilistic AutoRegressive Neural Networks for Accurate Long-range
Forecasting [6.295157260756792]
確率的自己回帰ニューラルネットワーク(PARNN)について紹介する。
PARNNは、非定常性、非線形性、非調和性、長距離依存、カオスパターンを示す複雑な時系列データを扱うことができる。
本研究では,Transformers,NBeats,DeepARなどの標準統計モデル,機械学習モデル,ディープラーニングモデルに対して,PARNNの性能を評価する。
論文 参考訳(メタデータ) (2022-04-01T17:57:36Z) - Deep Generative model with Hierarchical Latent Factors for Time Series
Anomaly Detection [40.21502451136054]
本研究は、時系列異常検出のための新しい生成モデルであるDGHLを提示する。
トップダウンの畳み込みネットワークは、新しい階層的な潜在空間を時系列ウィンドウにマッピングし、時間ダイナミクスを利用して情報を効率的にエンコードする。
提案手法は,4つのベンチマーク・データセットにおいて,現在の最先端モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-02-15T17:19:44Z) - Deep Time Series Models for Scarce Data [8.673181404172963]
時系列データは多くの領域で爆発的な速度で成長し、時系列モデリング研究の急増を刺激している。
データ希少性は、膨大なデータ分析の問題で発生する普遍的な問題です。
論文 参考訳(メタデータ) (2021-03-16T22:16:54Z) - Synergetic Learning of Heterogeneous Temporal Sequences for
Multi-Horizon Probabilistic Forecasting [48.8617204809538]
本稿では,新しい条件生成モデルである変分相乗型マルチホライゾンネットワーク(VSMHN)を提案する。
不均一なシーケンス間で複雑な相関関係を学習するために、深部プロセスモデルと変動的リカレントニューラルネットワークの進歩を組み合わせるために、調整されたエンコーダが考案された。
我々のモデルは変動予測を用いて効果的に訓練でき、モンテカルロシミュレーションを用いて予測を生成することができる。
論文 参考訳(メタデータ) (2021-01-31T11:00:55Z) - Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models [110.82452096672182]
逐次データによる曖昧な予測を扱うために,Multiple hypothesis Prediction(MHP)モデルの拡張を提案する。
また、不確実性を考慮するのに適した曖昧な問題に対する新しい尺度も導入する。
論文 参考訳(メタデータ) (2020-03-10T09:15:42Z) - A Multi-Channel Neural Graphical Event Model with Negative Evidence [76.51278722190607]
イベントデータセットは、タイムライン上で不規則に発生するさまざまなタイプのイベントのシーケンスである。
基礎となる強度関数を推定するために,非パラメトリックディープニューラルネットワーク手法を提案する。
論文 参考訳(メタデータ) (2020-02-21T23:10:50Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
本稿では,ビデオシーケンスの長期相関を効率的に学習できる高次LSTMモデルを提案する。
これは、時間をかけて畳み込み特徴を組み合わせることによって予測を行う、新しいテンソルトレインモジュールによって達成される。
この結果は,幅広いアプリケーションやデータセットにおいて,最先端のパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2020-02-21T05:00:01Z) - Conditional Mutual information-based Contrastive Loss for Financial Time
Series Forecasting [12.0855096102517]
金融時系列予測のための表現学習フレームワークを提案する。
本稿では、まず時系列データからコンパクトな表現を学習し、次に学習した表現を用いて、時系列の動きを予測するためのより単純なモデルを訓練する。
論文 参考訳(メタデータ) (2020-02-18T15:24:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。