Enhanced Scalability in Assessing Quantum Integer Factorization Performance
- URL: http://arxiv.org/abs/2305.05249v3
- Date: Tue, 19 Mar 2024 09:26:16 GMT
- Title: Enhanced Scalability in Assessing Quantum Integer Factorization Performance
- Authors: Junseo Lee,
- Abstract summary: In this chapter, we aim to analyze the time required for integer factorization tasks using Shor's algorithm.
We also observe the impact of parameter pre-selection in Shor's algorithm.
- Score: 1.0619039878979954
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the advancement of quantum technologies, there is a potential threat to traditional encryption systems based on integer factorization. Therefore, developing techniques for accurately measuring the performance of associated quantum algorithms is crucial, as it can provide insights into the practical feasibility from the current perspective. In this chapter, we aim to analyze the time required for integer factorization tasks using Shor's algorithm within a gate-based quantum circuit simulator of the matrix product state type. Additionally, we observe the impact of parameter pre-selection in Shor's algorithm. Specifically, this pre-selection is expected to increase the success rate of integer factorization by reducing the number of iterations and facilitating performance measurement under fixed conditions, thus enabling scalable performance evaluation even on real quantum hardware.
Related papers
- T-Count Optimizing Genetic Algorithm for Quantum State Preparation [0.05999777817331316]
We present and utilize a genetic algorithm for state preparation circuits consisting of gates from the Clifford + T gate set.
Our algorithm does automatically generate fault tolerantly implementable solutions where the number of the most error prone components is reduced.
arXiv Detail & Related papers (2024-06-06T12:26:14Z) - Improved Quantum Algorithms for Eigenvalues Finding and Gradient Descent [0.0]
Block encoding is a key ingredient in the recently developed quantum signal processing that forms a unifying framework for quantum algorithms.
In this article, we utilize block encoding to substantially enhance two previously proposed quantum algorithms.
We show how to extend our proposed method to different contexts, including matrix inversion and multiple eigenvalues estimation.
arXiv Detail & Related papers (2023-12-22T15:59:03Z) - On-Chip Hardware-Aware Quantization for Mixed Precision Neural Networks [52.97107229149988]
We propose an On-Chip Hardware-Aware Quantization framework, performing hardware-aware mixed-precision quantization on deployed edge devices.
For efficiency metrics, we built an On-Chip Quantization Aware pipeline, which allows the quantization process to perceive the actual hardware efficiency of the quantization operator.
For accuracy metrics, we propose Mask-Guided Quantization Estimation technology to effectively estimate the accuracy impact of operators in the on-chip scenario.
arXiv Detail & Related papers (2023-09-05T04:39:34Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Optimization Applications as Quantum Performance Benchmarks [0.0]
Combinatorial optimization is anticipated to be one of the primary use cases for quantum computation in the coming years.
Inspired by existing methods to characterize classical optimization algorithms, we analyze the solution quality obtained by solving Max-Cut problems.
This is used to guide the development of an advanced benchmarking framework for quantum computers.
arXiv Detail & Related papers (2023-02-05T01:56:06Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Reducing the cost of energy estimation in the variational quantum
eigensolver algorithm with robust amplitude estimation [50.591267188664666]
Quantum chemistry and materials is one of the most promising applications of quantum computing.
Much work is still to be done in matching industry-relevant problems in these areas with quantum algorithms that can solve them.
arXiv Detail & Related papers (2022-03-14T16:51:36Z) - Performance Evaluations of Noisy Approximate Quantum Fourier Arithmetic [1.1140384738063092]
We implement QFT-based integer addition and multiplications on quantum computers.
These operations are fundamental to various quantum applications.
We evaluate these implementations based on IBM's superconducting qubit architecture.
arXiv Detail & Related papers (2021-12-17T06:51:18Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Quantum-enhanced algorithms for classical target detection in complex
environments [0.0]
Quantum computational approaches to some classic target identification and localization algorithms, especially for radar images, are investigated.
Algorithm is inspired by recent approaches to quantum machine learning, but requires significant extensions.
Application regimes where quantum efficiencies could enable significant overall algorithm speedup are identified.
arXiv Detail & Related papers (2020-07-29T21:07:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.