Pooling techniques in hybrid quantum-classical convolutional neural
networks
- URL: http://arxiv.org/abs/2305.05603v1
- Date: Tue, 9 May 2023 16:51:46 GMT
- Title: Pooling techniques in hybrid quantum-classical convolutional neural
networks
- Authors: Maureen Monnet, Hanady Gebran, Andrea Matic-Flierl, Florian Kiwit,
Balthasar Schachtner, Amine Bentellis, Jeanette Miriam Lorenz
- Abstract summary: In-depth study of pooling techniques in hybrid quantum-classical convolutional neural networks (QCCNNs) for classifying 2D medical images is performed.
We find similar or better performance in comparison to an equivalent classical model and QCCNN without pooling.
It is promising to study architectural choices in QCCNNs in more depth for future applications.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum machine learning has received significant interest in recent years,
with theoretical studies showing that quantum variants of classical machine
learning algorithms can provide good generalization from small training data
sizes. However, there are notably no strong theoretical insights about what
makes a quantum circuit design better than another, and comparative studies
between quantum equivalents have not been done for every type of classical
layers or techniques crucial for classical machine learning. Particularly, the
pooling layer within convolutional neural networks is a fundamental operation
left to explore. Pooling mechanisms significantly improve the performance of
classical machine learning algorithms by playing a key role in reducing input
dimensionality and extracting clean features from the input data. In this work,
an in-depth study of pooling techniques in hybrid quantum-classical
convolutional neural networks (QCCNNs) for classifying 2D medical images is
performed. The performance of four different quantum and hybrid pooling
techniques is studied: mid-circuit measurements, ancilla qubits with controlled
gates, modular quantum pooling blocks and qubit selection with classical
postprocessing. We find similar or better performance in comparison to an
equivalent classical model and QCCNN without pooling and conclude that it is
promising to study architectural choices in QCCNNs in more depth for future
applications.
Related papers
- Let the Quantum Creep In: Designing Quantum Neural Network Models by
Gradually Swapping Out Classical Components [1.024113475677323]
Modern AI systems are often built on neural networks.
We propose a framework where classical neural network layers are gradually replaced by quantum layers.
We conduct numerical experiments on image classification datasets to demonstrate the change of performance brought by the systematic introduction of quantum components.
arXiv Detail & Related papers (2024-09-26T07:01:29Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum Transfer Learning for MNIST Classification Using a Hybrid Quantum-Classical Approach [0.0]
This research explores the integration of quantum computing with classical machine learning for image classification tasks.
We propose a hybrid quantum-classical approach that leverages the strengths of both paradigms.
The experimental results indicate that while the hybrid model demonstrates the feasibility of integrating quantum computing with classical techniques, the accuracy of the final model, trained on quantum outcomes, is currently lower than the classical model trained on compressed features.
arXiv Detail & Related papers (2024-08-05T22:16:27Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Bridging Classical and Quantum Machine Learning: Knowledge Transfer From
Classical to Quantum Neural Networks Using Knowledge Distillation [0.0]
This paper introduces a new method to transfer knowledge from classical to quantum neural networks using knowledge distillation.
We adapt classical convolutional neural network (CNN) architectures like LeNet and AlexNet to serve as teacher networks.
Quantum models achieve an average accuracy improvement of 0.80% on the MNIST dataset and 5.40% on the more complex Fashion MNIST dataset.
arXiv Detail & Related papers (2023-11-23T05:06:43Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
We build over a proposed framework for evaluating the generalization performance of generative models.
We establish the first comparative race towards practical quantum advantage (PQA) between classical and quantum generative models.
Our results suggest that QCBMs are more efficient in the data-limited regime than the other state-of-the-art classical generative models.
arXiv Detail & Related papers (2023-03-27T22:48:28Z) - Problem-Dependent Power of Quantum Neural Networks on Multi-Class
Classification [83.20479832949069]
Quantum neural networks (QNNs) have become an important tool for understanding the physical world, but their advantages and limitations are not fully understood.
Here we investigate the problem-dependent power of QCs on multi-class classification tasks.
Our work sheds light on the problem-dependent power of QNNs and offers a practical tool for evaluating their potential merit.
arXiv Detail & Related papers (2022-12-29T10:46:40Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
Building a quantum analog of classical deep neural networks represents a fundamental challenge in quantum computing.
Key issue is how to address the inherent non-linearity of classical deep learning.
We introduce the Quantum Path Kernel, a formulation of quantum machine learning capable of replicating those aspects of deep machine learning.
arXiv Detail & Related papers (2022-12-22T16:06:24Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - Multiclass classification using quantum convolutional neural networks
with hybrid quantum-classical learning [0.5999777817331318]
We propose a quantum machine learning approach based on quantum convolutional neural networks for solving multiclass classification problems.
We use the proposed approach to demonstrate the 4-class classification for the case of the MNIST dataset using eight qubits for data encoding and four acnilla qubits.
Our results demonstrate comparable accuracy of our solution with classical convolutional neural networks with comparable numbers of trainable parameters.
arXiv Detail & Related papers (2022-03-29T09:07:18Z) - Comparing concepts of quantum and classical neural network models for
image classification task [0.456877715768796]
This material includes the results of experiments on training and performance of a hybrid quantum-classical neural network.
Although its simulation is time-consuming, the quantum network, although its simulation is time-consuming, overcomes the classical network.
arXiv Detail & Related papers (2021-08-19T18:49:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.