論文の概要: Multi-Task End-to-End Training Improves Conversational Recommendation
- arxiv url: http://arxiv.org/abs/2305.06218v1
- Date: Mon, 8 May 2023 22:42:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-11 12:32:58.748020
- Title: Multi-Task End-to-End Training Improves Conversational Recommendation
- Title(参考訳): 会話レコメンデーションを改善するマルチタスクエンドツーエンドトレーニング
- Authors: Naveen Ram, Dima Kuzmin, Ellie Ka In Chio, Moustafa Farid Alzantot,
Santiago Ontanon, Ambarish Jash, and Judith Yue Li
- Abstract要約: 本稿では,T5テキスト・トゥ・テキスト・トランスフォーマモデルに基づく統一型トランスフォーマーモデルにより,関連項目の推薦と対話生成の両面で競争力を発揮することを示す。
我々は、ReDIALの会話型映画レコメンデーションデータセットにモデルを微調整し、MovieLensから派生した追加のトレーニングタスクを作成する。
一連の調査研究を用いて,追加課題における学習知識が会話環境に伝達されることを実証した。
- 参考スコア(独自算出の注目度): 0.710757107375544
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we analyze the performance of a multitask end-to-end
transformer model on the task of conversational recommendations, which aim to
provide recommendations based on a user's explicit preferences expressed in
dialogue. While previous works in this area adopt complex multi-component
approaches where the dialogue management and entity recommendation tasks are
handled by separate components, we show that a unified transformer model, based
on the T5 text-to-text transformer model, can perform competitively in both
recommending relevant items and generating conversation dialogue. We fine-tune
our model on the ReDIAL conversational movie recommendation dataset, and create
additional training tasks derived from MovieLens (such as the prediction of
movie attributes and related movies based on an input movie), in a multitask
learning setting. Using a series of probe studies, we demonstrate that the
learned knowledge in the additional tasks is transferred to the conversational
setting, where each task leads to a 9%-52% increase in its related probe score.
- Abstract(参考訳): 本稿では,対話で表現されたユーザの明示的な嗜好に基づくレコメンデーションを提供することを目的とした,会話レコメンデーションタスクにおけるマルチタスクエンド・ツー・エンドトランスフォーマーモデルの性能解析を行う。
この領域では、対話管理とエンティティレコメンデーションタスクを個別のコンポーネントで処理する複雑なマルチコンポーネントアプローチが採用されていたが、T5テキスト・テキスト・トランスフォーマーモデルに基づく統一トランスフォーマーモデルが、関連する項目の推薦と会話の対話の生成の両方において競合的に実行可能であることを示す。
我々は,マルチタスク学習環境では,会話型映画のレコメンデーションデータセット上でモデルを微調整し,映画レンズからのトレーニングタスク(映画属性の予測や入力映画に基づく関連映画の予測など)を作成する。
一連のプローブ研究を用いて、追加タスクにおける学習知識が会話設定に伝達され、各タスクが関連するプローブスコアの9%~52%の増加につながることを示した。
関連論文リスト
- Dialog Action-Aware Transformer for Dialog Policy Learning [22.262659702998892]
本稿では,RLエージェントの学習速度を高速化するために,事前学習言語モデルからプレーンテキスト知識をフル活用することを提案する。
具体的には,ダイアログアクション対応トランスフォーマーエンコーダ(DaTrans)を設計し,マスクされた最後のアクションタスクと呼ばれる新しい微調整手順を統合する。
DaTransはさらに、継続的な相互作用を伴うRL環境で最適化され、長期蓄積された報酬を最大化するためにダイアログアクション空間での探索を通じて進化する。
論文 参考訳(メタデータ) (2023-09-05T13:47:25Z) - FCC: Fusing Conversation History and Candidate Provenance for Contextual
Response Ranking in Dialogue Systems [53.89014188309486]
複数のチャネルからコンテキスト情報を統合できるフレキシブルなニューラルネットワークフレームワークを提案する。
会話応答ランキングタスクの評価に広く用いられているMSDialogデータセット上で,本モデルの評価を行った。
論文 参考訳(メタデータ) (2023-03-31T23:58:28Z) - Improving Zero and Few-shot Generalization in Dialogue through
Instruction Tuning [27.92734269206744]
InstructDialは対話のための命令チューニングフレームワークである。
48の多様な対話タスクからなるリポジトリからなり、59のオープンな対話データセットから作成されるテキストとテキストの統一フォーマットである。
分析の結果,InstructDialは未知のデータセットや対話評価や意図検出などのタスクに対して良好なゼロショット性能を実現し,数ショット設定でさらに優れたパフォーマンスを実現していることがわかった。
論文 参考訳(メタデータ) (2022-05-25T11:37:06Z) - KETOD: Knowledge-Enriched Task-Oriented Dialogue [77.59814785157877]
対話システム研究における既存の研究は、主にタスク指向の対話とチャットを独立したドメインとして扱う。
本研究では,タスク指向対話と知識ベースチップチャットを一つのモデルに効果的に統合する方法について検討する。
論文 参考訳(メタデータ) (2022-05-11T16:01:03Z) - Logical Reasoning for Task Oriented Dialogue Systems [57.440956636333325]
本稿では,ロバータやT5などの変圧器モデルに対して,与えられた対話コンテキストにおける事実の集合を推論する新しい手法を提案する。
本手法は,モデルが論理関係を学習するのに役立つ合成データ生成機構を含む。
対話コンテキストが全ての必要な情報を含む場合、変換器に基づくモデルが論理的推論を行い、質問に答えることを示す。
論文 参考訳(メタデータ) (2022-02-08T21:46:27Z) - Reasoning in Dialog: Improving Response Generation by Context Reading
Comprehension [49.92173751203827]
マルチターンダイアログでは、発話が文の完全な形を取るとは限らない。
読み解きの質問に答えるモデルの能力を検討し、応答生成性能の向上を提案する。
論文 参考訳(メタデータ) (2020-12-14T10:58:01Z) - Re-framing Incremental Deep Language Models for Dialogue Processing with
Multi-task Learning [14.239355474794142]
本稿では,1つのインクリメンタル対話処理モデルのトレーニングを可能にするマルチタスク学習フレームワークを提案する。
これらのタスクは、タスクからのノイズの重大度に依存する各タスクの最適貢献により、互いに正の帰納バイアスを与えることを示す。
論文 参考訳(メタデータ) (2020-11-13T04:31:51Z) - Response Selection for Multi-Party Conversations with Dynamic Topic
Tracking [63.15158355071206]
我々は、応答と関連する会話コンテキストの間のトピックを一致させるために、動的トピック追跡タスクとして応答選択をフレーム化する。
本研究では,大規模な事前学習モデルによる効率的な符号化を支援する新しいマルチタスク学習フレームワークを提案する。
DSTC-8 Ubuntu IRCデータセットの実験結果は、応答選択とトピックのアンタングル化タスクにおける最先端の結果を示している。
論文 参考訳(メタデータ) (2020-10-15T14:21:38Z) - On Task-Level Dialogue Composition of Generative Transformer Model [9.751234480029765]
本研究では,トランスフォーマー生成モデルにおけるヒューマン・ヒューマン・タスク指向対話の学習効果について検討した。
そこで本研究では,(1)人間と人間による単一タスク対話から学習のための複合タスク対話データを作成すること,(2)補助的損失を用いてエンコーダ表現を単一タスク対話に不変にすること,の2つの方法を提案する。
論文 参考訳(メタデータ) (2020-10-09T22:10:03Z) - Learning an Effective Context-Response Matching Model with
Self-Supervised Tasks for Retrieval-based Dialogues [88.73739515457116]
我々は,次のセッション予測,発話復元,不整合検出,一貫性判定を含む4つの自己教師型タスクを導入する。
我々はPLMに基づく応答選択モデルとこれらの補助タスクをマルチタスク方式で共同で訓練する。
実験結果から,提案した補助的自己教師型タスクは,多ターン応答選択において大きな改善をもたらすことが示された。
論文 参考訳(メタデータ) (2020-09-14T08:44:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。