論文の概要: Towards best practices in AGI safety and governance: A survey of expert
opinion
- arxiv url: http://arxiv.org/abs/2305.07153v1
- Date: Thu, 11 May 2023 21:54:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-15 14:37:39.120268
- Title: Towards best practices in AGI safety and governance: A survey of expert
opinion
- Title(参考訳): agiの安全とガバナンスのベストプラクティスに向けて:専門家の意見調査
- Authors: Jonas Schuett, Noemi Dreksler, Markus Anderljung, David McCaffary,
Lennart Heim, Emma Bluemke, Ben Garfinkel
- Abstract要約: OpenAI、Google DeepMind、Anthropicといった主要なAI企業は、人工知能(AGI)システムを構築するという目標を掲げている。
この目標を追求することで、大きなリスクをもたらすAIシステムを開発、デプロイすることが可能になる。
ベストプラクティスの特定を支援するため,AGIラボ,アカデミック,市民社会の専門家92名を対象に調査を行った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A number of leading AI companies, including OpenAI, Google DeepMind, and
Anthropic, have the stated goal of building artificial general intelligence
(AGI) - AI systems that achieve or exceed human performance across a wide range
of cognitive tasks. In pursuing this goal, they may develop and deploy AI
systems that pose particularly significant risks. While they have already taken
some measures to mitigate these risks, best practices have not yet emerged. To
support the identification of best practices, we sent a survey to 92 leading
experts from AGI labs, academia, and civil society and received 51 responses.
Participants were asked how much they agreed with 50 statements about what AGI
labs should do. Our main finding is that participants, on average, agreed with
all of them. Many statements received extremely high levels of agreement. For
example, 98% of respondents somewhat or strongly agreed that AGI labs should
conduct pre-deployment risk assessments, dangerous capabilities evaluations,
third-party model audits, safety restrictions on model usage, and red teaming.
Ultimately, our list of statements may serve as a helpful foundation for
efforts to develop best practices, standards, and regulations for AGI labs.
- Abstract(参考訳): OpenAI、Google DeepMind、Anthropicなど、主要なAI企業は、幅広い認知タスクで人のパフォーマンスを達成または超える人工知能システム(AGI)を構築するという目標を掲げている。
この目標を追求することで、特に重大なリスクをもたらすAIシステムを開発、展開することが可能になる。
これらのリスクを軽減するための対策をすでに講じているが、ベストプラクティスはまだ現れていない。
ベストプラクティスの特定を支援するため,agi labs,アカデミア,市民社会の専門家92名を対象に調査を行い,51の回答を得た。
参加者は、agi labsが行うべき50の声明にどの程度同意したかを尋ねられた。
私たちの主な発見は、参加者が平均してすべての参加者と一致していることです。
多くの声明は極めて高いレベルの合意を得た。
例えば、回答者の98%は、agi labsがデプロイ前のリスクアセスメント、危険な能力評価、サードパーティのモデル監査、モデル使用に関する安全性制限、レッドチーム化を行うべきだと、ある程度あるいは強く同意している。
最終的に、私たちのステートメントのリストは、AGIラボのベストプラクティス、標準、規制を開発するための有用な基盤として役立ちます。
関連論文リスト
- Engineering Trustworthy AI: A Developer Guide for Empirical Risk Minimization [53.80919781981027]
信頼できるAIのための重要な要件は、経験的リスク最小化のコンポーネントの設計選択に変換できる。
私たちは、AIの信頼性の新たな標準を満たすAIシステムを構築するための実用的なガイダンスを提供したいと思っています。
論文 参考訳(メタデータ) (2024-10-25T07:53:32Z) - The Ethics of Advanced AI Assistants [53.89899371095332]
本稿では,高度AIアシスタントがもたらす倫理的・社会的リスクについて論じる。
我々は、高度なAIアシスタントを自然言語インタフェースを持つ人工知能エージェントとして定義し、ユーザに代わってアクションのシーケンスを計画し実行することを目的としている。
先進的なアシスタントの社会規模での展開を考察し、協力、株式とアクセス、誤情報、経済的影響、環境、先進的なAIアシスタントの評価方法に焦点をあてる。
論文 参考訳(メタデータ) (2024-04-24T23:18:46Z) - Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits [54.648819983899614]
汎用AIは、一般大衆がAIを使用してそのパワーを利用するための障壁を下げたようだ。
本稿では,AI利用事例とその影響を推測し,評価するためのフレームワークであるPartICIP-AIを紹介する。
論文 参考訳(メタデータ) (2024-03-21T19:12:37Z) - A Safe Harbor for AI Evaluation and Red Teaming [124.89885800509505]
一部の研究者は、そのような研究の実施や研究成果の公表が、アカウント停止や法的報復につながることを恐れている。
我々は、主要なAI開発者が法的、技術的に安全な港を提供することを約束することを提案します。
これらのコミットメントは、ジェネレーティブAIのリスクに取り組むための、より包括的で意図しないコミュニティ努力への必要なステップである、と私たちは信じています。
論文 参考訳(メタデータ) (2024-03-07T20:55:08Z) - Investigating Responsible AI for Scientific Research: An Empirical Study [4.597781832707524]
このような機関におけるResponsible AI(RAI)の推進は、AI設計と開発に倫理的配慮を統合することの重要性の高まりを強調している。
本稿では,AI設計・開発に内在する倫理的リスクに対する意識と準備性を評価することを目的とする。
その結果、倫理的、責任的、包括的AIに関する知識ギャップが明らかとなり、利用可能なAI倫理フレームワークに対する認識が制限された。
論文 参考訳(メタデータ) (2023-12-15T06:40:27Z) - Control Risk for Potential Misuse of Artificial Intelligence in Science [85.91232985405554]
我々は、科学におけるAI誤用の危険性の認識を高めることを目的としている。
化学科学における誤用の実例を取り上げる。
我々は、科学におけるAIモデルの誤用リスクを制御するSciGuardというシステムを提案する。
論文 参考訳(メタデータ) (2023-12-11T18:50:57Z) - Assessing AI Impact Assessments: A Classroom Study [14.768235460961876]
提案されたAIシステムへの影響を想像するための構造化プロセスを提供するツール群であるAIIA(Artificial Intelligence Impact Assessments)が、AIシステムを管理するための提案としてますます人気が高まっている。
近年、政府や民間団体の取り組みによりAIIAの多様なインスタンス化が提案されている。
我々は,AIの社会的・倫理的意味に焦点をあてた選択科目において,大規模な研究集約大学(R1)で授業研究を行う。
影響評価が参加者の潜在能力に対する認識に影響を及ぼすという予備的証拠を見いだす。
論文 参考訳(メタデータ) (2023-11-19T01:00:59Z) - FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare [73.78776682247187]
医療AIに関連する技術的、臨床的、倫理的、法的リスクに関する懸念が高まっている。
この研究は、Future-AIガイドラインを、医療における信頼できるAIツールの開発とデプロイを導くための最初の国際コンセンサスフレームワークとして説明している。
論文 参考訳(メタデータ) (2023-08-11T10:49:05Z) - Risk assessment at AGI companies: A review of popular risk assessment
techniques from other safety-critical industries [0.0]
OpenAI、Google DeepMind、Anthhropicといった企業は、人工知能(AGI)の構築を目標としている。
AGIが壊滅的なリスクをもたらすとの懸念が高まっている。
本稿では,他の安全クリティカル産業のリスクアセスメント技術についてレビューし,AGI企業が活用する方法を提案する。
論文 参考訳(メタデータ) (2023-07-17T20:36:51Z) - Guideline for Trustworthy Artificial Intelligence -- AI Assessment
Catalog [0.0]
AIアプリケーションとそれに基づくビジネスモデルが、高品質な標準に従って開発されている場合にのみ、その潜在能力を最大限に発揮できることは明らかです。
AIアプリケーションの信頼性の問題は非常に重要であり、多くの主要な出版物の主題となっている。
このAIアセスメントカタログは、まさにこの点に対応しており、2つのターゲットグループを対象としている。
論文 参考訳(メタデータ) (2023-06-20T08:07:18Z) - Statutory Professions in AI governance and their consequences for
explainable AI [2.363388546004777]
AIの使用によって引き起こされる意図的・偶発的な害は個人の健康、安全、権利に影響を及ぼした。
我々は、AI規制フレームワークの必須部分として、法定専門職の枠組みを導入することを提案する。
論文 参考訳(メタデータ) (2023-06-15T08:51:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。