論文の概要: Assessing AI Impact Assessments: A Classroom Study
- arxiv url: http://arxiv.org/abs/2311.11193v1
- Date: Sun, 19 Nov 2023 01:00:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-22 06:55:13.264664
- Title: Assessing AI Impact Assessments: A Classroom Study
- Title(参考訳): AIのインパクトアセスメントを評価する: 教室での研究
- Authors: Nari Johnson, Hoda Heidari
- Abstract要約: 提案されたAIシステムへの影響を想像するための構造化プロセスを提供するツール群であるAIIA(Artificial Intelligence Impact Assessments)が、AIシステムを管理するための提案としてますます人気が高まっている。
近年、政府や民間団体の取り組みによりAIIAの多様なインスタンス化が提案されている。
我々は,AIの社会的・倫理的意味に焦点をあてた選択科目において,大規模な研究集約大学(R1)で授業研究を行う。
影響評価が参加者の潜在能力に対する認識に影響を及ぼすという予備的証拠を見いだす。
- 参考スコア(独自算出の注目度): 14.768235460961876
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial Intelligence Impact Assessments ("AIIAs"), a family of tools that
provide structured processes to imagine the possible impacts of a proposed AI
system, have become an increasingly popular proposal to govern AI systems.
Recent efforts from government or private-sector organizations have proposed
many diverse instantiations of AIIAs, which take a variety of forms ranging
from open-ended questionnaires to graded score-cards. However, to date that has
been limited evaluation of existing AIIA instruments. We conduct a classroom
study (N = 38) at a large research-intensive university (R1) in an elective
course focused on the societal and ethical implications of AI. We assign
students to different organizational roles (for example, an ML scientist or
product manager) and ask participant teams to complete one of three existing AI
impact assessments for one of two imagined generative AI systems. In our
thematic analysis of participants' responses to pre- and post-activity
questionnaires, we find preliminary evidence that impact assessments can
influence participants' perceptions of the potential risks of generative AI
systems, and the level of responsibility held by AI experts in addressing
potential harm. We also discover a consistent set of limitations shared by
several existing AIIA instruments, which we group into concerns about their
format and content, as well as the feasibility and effectiveness of the
activity in foreseeing and mitigating potential harms. Drawing on the findings
of this study, we provide recommendations for future work on developing and
validating AIIAs.
- Abstract(参考訳): 提案されたAIシステムへの影響を想像するための構造化プロセスを提供するツール群であるAIIA(Artificial Intelligence Impact Assessments)が、AIシステムを管理するための提案として人気が高まっている。
近年、政府や民間団体の取り組みによりAIIAの多様なインスタンス化が提案されている。
しかし、これまでのAIIA楽器の評価は限られていた。
我々は,AIの社会的・倫理的意味に着目した選択科目において,大規模な研究集約大学(R1)で授業(N = 38)を行う。
学生を異なる組織の役割(例えばML科学者やプロダクトマネージャ)に割り当て、参加者チームに、2つの想像上の生成AIシステムのうちの1つに対して、既存の3つのAI影響評価の1つを完成させるよう依頼します。
参加者の行動前・後アンケートに対する反応のテーマ分析では、影響評価が、生成型AIシステムの潜在的なリスクに対する参加者の認識や、潜在的な害に対処するAI専門家の責任レベルに影響を及ぼすという予備的証拠が得られた。
また、既存のAIIA機器が共有する一貫した制約も発見し、それらのフォーマットや内容、および潜在的な害を予知・軽減するための活動の実現可能性と有効性について懸念する。
本研究の成果をもとに,AIIAの開発・検証に向けた今後の取り組みを提言する。
関連論文リスト
- Predicting the Impact of Generative AI Using an Agent-Based Model [0.0]
生成人工知能(AI)システムは、人間の創造性を模倣するコンテンツを自律的に生成することで産業を変革した。
本稿ではエージェント・ベース・モデリング(ABM)を用いてこれらの意味を探索する。
ABMは個人、ビジネス、政府エージェントを統合し、教育、スキル獲得、AIの採用、規制対応などのダイナミクスをシミュレートする。
論文 参考訳(メタデータ) (2024-08-30T13:13:56Z) - Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits [54.648819983899614]
汎用AIは、一般大衆がAIを使用してそのパワーを利用するための障壁を下げたようだ。
本稿では,AI利用事例とその影響を推測し,評価するためのフレームワークであるPartICIP-AIを紹介する。
論文 参考訳(メタデータ) (2024-03-21T19:12:37Z) - Beyond Recommender: An Exploratory Study of the Effects of Different AI
Roles in AI-Assisted Decision Making [48.179458030691286]
Recommender、Analyzer、Devil's Advocateの3つのAIの役割について検討する。
以上の結果から,各役割のタスクパフォーマンス,信頼性の適切性,ユーザエクスペリエンスにおける長所と短所が明らかとなった。
これらの洞察は、異なる状況に応じて適応的な機能的役割を持つAIアシスタントを設計する上で、貴重な意味を提供する。
論文 参考訳(メタデータ) (2024-03-04T07:32:28Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
この研究は、人工知能を自律走行車(AV)に統合する複雑さを探求する
AIコンポーネントがもたらした課題と、テスト手順への影響を調べます。
本稿は、重要な課題を特定し、AV技術におけるAIの研究・開発に向けた今後の方向性を提案する。
論文 参考訳(メタデータ) (2024-02-21T08:29:42Z) - Anticipating Impacts: Using Large-Scale Scenario Writing to Explore
Diverse Implications of Generative AI in the News Environment [3.660182910533372]
我々は、ジェネレーティブAIの潜在的なネガティブな影響について、3つの利害関係者グループの展望を広げ、期待を捉えることを目的としている。
シナリオ記述と参加観を用いて、認知的に多様な未来の想像力を掘り下げる。
生成的AI影響評価のためのツールボックスとして,シナリオ記述と参加予測の有用性について論じる。
論文 参考訳(メタデータ) (2023-10-10T06:59:27Z) - The AI Incident Database as an Educational Tool to Raise Awareness of AI
Harms: A Classroom Exploration of Efficacy, Limitations, & Future
Improvements [14.393183391019292]
AIインシデントデータベース(AIID)は、AI技術の現実世界への展開に起因する害や害の先行事例を索引付けする、比較的包括的なデータベースを提供する、数少ない試みの1つである。
本研究は、社会的に高い領域におけるAI損傷の有病率と重症度に対する意識を高めるための教育ツールとしてのAIIDの有効性を評価する。
論文 参考訳(メタデータ) (2023-10-10T02:55:09Z) - Analyzing Character and Consciousness in AI-Generated Social Content: A
Case Study of Chirper, the AI Social Network [0.0]
この研究はAIの振る舞いを包括的に調査し、多様な設定がチャーパーの反応に与える影響を分析している。
一連の認知テストを通じて、この研究はチャーパーズの自己認識とパターン認識の能力を評価する。
この研究の興味深い側面は、チャーパーのハンドルやパーソナリティのタイプがパフォーマンスに与える影響を探ることである。
論文 参考訳(メタデータ) (2023-08-30T15:40:18Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Progressing Towards Responsible AI [2.191505742658975]
学会と人工知能に関する天文台(OSAI)は、AI4EUプロジェクトから発展した。
OSAIは、AI(倫理的、法的、社会的、経済的、文化的)の幅広い問題に対するリフレクションを刺激することを目指している
論文 参考訳(メタデータ) (2020-08-11T09:46:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。