論文の概要: DAISM: Digital Approximate In-SRAM Multiplier-based Accelerator for DNN
Training and Inference
- arxiv url: http://arxiv.org/abs/2305.07376v2
- Date: Thu, 18 Jan 2024 10:22:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-19 20:44:53.107933
- Title: DAISM: Digital Approximate In-SRAM Multiplier-based Accelerator for DNN
Training and Inference
- Title(参考訳): DAISM:DNNトレーニングと推論のためのデジタル近似In-SRAM乗算器ベースの加速器
- Authors: Lorenzo Sonnino, Shaswot Shresthamali, Yuan He and Masaaki Kondo
- Abstract要約: PIMソリューションは、まだ成熟していない新しいメモリ技術か、パフォーマンス上のオーバーヘッドとスケーラビリティの問題のあるビットシリアル計算に依存している。
本稿では,従来のメモリを用いてビット並列計算を行い,複数のワードラインのアクティベーションを利用する,SRAM内デジタル乗算器を提案する。
次に、この乗算器を利用したアーキテクチャであるDAISMを導入し、SOTAと比較して最大2桁高い面積効率を実現し、競争エネルギー効率を向上する。
- 参考スコア(独自算出の注目度): 4.718504401468233
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: DNNs are widely used but face significant computational costs due to matrix
multiplications, especially from data movement between the memory and
processing units. One promising approach is therefore Processing-in-Memory as
it greatly reduces this overhead. However, most PIM solutions rely either on
novel memory technologies that have yet to mature or bit-serial computations
that have significant performance overhead and scalability issues. Our work
proposes an in-SRAM digital multiplier, that uses a conventional memory to
perform bit-parallel computations, leveraging multiple wordlines activation. We
then introduce DAISM, an architecture leveraging this multiplier, which
achieves up to two orders of magnitude higher area efficiency compared to the
SOTA counterparts, with competitive energy efficiency.
- Abstract(参考訳): DNNは広く使われているが、特にメモリと処理ユニット間のデータ移動による行列乗算による計算コストが著しく高い。
したがって、1つの有望なアプローチは、このオーバーヘッドを大幅に削減するため、Processing-in-Memoryである。
しかし、ほとんどのPIMソリューションは、まだ成熟していない新しいメモリ技術か、パフォーマンス上のオーバーヘッドとスケーラビリティの問題のあるビットシリアル計算に依存している。
本稿では,従来のメモリを用いてビット並列計算を行い,複数のワードラインのアクティベーションを利用する,SRAM内デジタル乗算器を提案する。
次に、この乗算器を利用したアーキテクチャであるDAISMを導入し、SOTAと比較して最大2桁高い面積効率を実現し、競争エネルギー効率を向上する。
関連論文リスト
- Efficient Arbitrary Precision Acceleration for Large Language Models on GPU Tensor Cores [3.6385567224218556]
大規模言語モデル(LLM)は広く応用されているが、効率的な推論では課題に直面している。
本稿では、並列計算を容易にし、対称量子化をサポートする新しいバイポーラ-INTデータフォーマットを提案する。
ビットレベルで分解・復元する任意の精度行列乗算方式を実装し,フレキシブルな精度を実現する。
論文 参考訳(メタデータ) (2024-09-26T14:17:58Z) - CHIME: Energy-Efficient STT-RAM-based Concurrent Hierarchical In-Memory Processing [1.5566524830295307]
本稿では、新しいPiC/PiMアーキテクチャ、Concurrent Hierarchical In-Memory Processing(CHIME)を紹介する。
CHIMEは、メモリ階層の複数のレベルにわたる不均一な計算ユニットを戦略的に組み込む。
実験の結果、最先端のビット線コンピューティングアプローチと比較して、CHIMEは57.95%と78.23%の大幅なスピードアップと省エネを実現していることがわかった。
論文 参考訳(メタデータ) (2024-07-29T01:17:54Z) - OPIMA: Optical Processing-In-Memory for Convolutional Neural Network Acceleration [5.0389804644646174]
我々は,処理インメモリ(PIM)ベースの機械学習アクセラレータであるOPIMAを紹介する。
PIMは、内部データ移動のボトルネックのため、高いスループットとエネルギー効率を達成するのに苦労している。
我々は,OPIMAのスループットが2.98倍,エネルギー効率が137倍であることを示す。
論文 参考訳(メタデータ) (2024-07-11T06:12:04Z) - Sparser is Faster and Less is More: Efficient Sparse Attention for Long-Range Transformers [58.5711048151424]
SPARSEK Attention(SPARSEK Attention)は、計算およびメモリ障害を克服するために設計された、新しいスパースアテンション機構である。
提案手法では,各クエリに対して一定数のKVペアを選択するために,スコアリングネットワークと差別化可能なトップkマスク演算子であるSPARSEKを統合する。
実験結果から,SPARSEK注意は従来のスパースアテンション法よりも優れていた。
論文 参考訳(メタデータ) (2024-06-24T15:55:59Z) - Efficient and accurate neural field reconstruction using resistive memory [52.68088466453264]
デジタルコンピュータにおける従来の信号再構成手法は、ソフトウェアとハードウェアの両方の課題に直面している。
本稿では,スパース入力からの信号再構成のためのソフトウェア・ハードウェア協調最適化を用いた体系的アプローチを提案する。
この研究は、AI駆動の信号復元技術を進歩させ、将来の効率的で堅牢な医療AIと3Dビジョンアプリケーションへの道を開く。
論文 参考訳(メタデータ) (2024-04-15T09:33:09Z) - Random resistive memory-based deep extreme point learning machine for
unified visual processing [67.51600474104171]
ハードウェア・ソフトウェア共同設計型, ランダム抵抗型メモリベース深部極点学習マシン(DEPLM)を提案する。
我々の共同設計システムは,従来のシステムと比較して,エネルギー効率の大幅な向上とトレーニングコストの削減を実現している。
論文 参考訳(メタデータ) (2023-12-14T09:46:16Z) - Containing Analog Data Deluge at Edge through Frequency-Domain
Compression in Collaborative Compute-in-Memory Networks [0.0]
本稿では,ディープラーニング推論タスクにおける領域効率向上のための新しい手法を提案する。
アナログデータをより効率的に処理することにより、センサからの貴重なデータを選択的に保持し、アナログデータデルージュによる課題を軽減することができる。
論文 参考訳(メタデータ) (2023-09-20T03:52:04Z) - Blockwise Parallel Transformer for Large Context Models [70.97386897478238]
Blockwise Parallel Transformer (BPT) は、メモリコストを最小限に抑えるために、自己アテンションとフィードフォワードネットワーク融合のブロックワイズ計算である。
メモリ効率を維持しながら、長い入力シーケンスを処理することにより、BPTはバニラ変換器の32倍、以前のメモリ効率の4倍のトレーニングシーケンスを可能にする。
論文 参考訳(メタデータ) (2023-05-30T19:25:51Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
Adapter-ALBERTは、様々なタスクにわたる最大データ再利用のための効率的なモデル最適化である。
検証されたNLPエッジアクセラレータ上でシミュレーションを行うことにより、モデルを不均一なオンチップメモリアーキテクチャにマッピングする利点を実証する。
論文 参考訳(メタデータ) (2023-03-25T14:40:59Z) - SmartDeal: Re-Modeling Deep Network Weights for Efficient Inference and
Training [82.35376405568975]
ディープニューラルネットワーク(DNN)は重いパラメータ化を伴い、ストレージ用の外部動的ランダムアクセスメモリ(DRAM)につながります。
We present SmartDeal (SD), a algorithm framework to trade high-cost memory storage/ access for lower-cost compute。
SDは貯蔵および訓練エネルギーの10.56xそして4.48x減少、最先端の訓練のベースラインと比較される無視可能な正確さの損失をもたらすことを示します。
論文 参考訳(メタデータ) (2021-01-04T18:54:07Z) - In-memory Implementation of On-chip Trainable and Scalable ANN for AI/ML
Applications [0.0]
本稿では,人工知能(AI)と機械学習(ML)アプリケーションを実現するための,ANNのためのインメモリコンピューティングアーキテクチャを提案する。
我々の新しいオンチップトレーニングとインメモリアーキテクチャは、プリチャージサイクル当たりの配列の複数行を同時にアクセスすることで、エネルギーコストを削減し、スループットを向上させる。
提案したアーキテクチャはIRISデータセットでトレーニングされ、以前の分類器と比較してMAC当たりのエネルギー効率が4,6倍に向上した。
論文 参考訳(メタデータ) (2020-05-19T15:36:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。