論文の概要: OPIMA: Optical Processing-In-Memory for Convolutional Neural Network Acceleration
- arxiv url: http://arxiv.org/abs/2407.08205v1
- Date: Thu, 11 Jul 2024 06:12:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 18:48:48.801052
- Title: OPIMA: Optical Processing-In-Memory for Convolutional Neural Network Acceleration
- Title(参考訳): OPIMA:畳み込みニューラルネットワーク高速化のための光処理インメモリ
- Authors: Febin Sunny, Amin Shafiee, Abhishek Balasubramaniam, Mahdi Nikdast, Sudeep Pasricha,
- Abstract要約: 我々は,処理インメモリ(PIM)ベースの機械学習アクセラレータであるOPIMAを紹介する。
PIMは、内部データ移動のボトルネックのため、高いスループットとエネルギー効率を達成するのに苦労している。
我々は,OPIMAのスループットが2.98倍,エネルギー効率が137倍であることを示す。
- 参考スコア(独自算出の注目度): 5.0389804644646174
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent advances in machine learning (ML) have spotlighted the pressing need for computing architectures that bridge the gap between memory bandwidth and processing power. The advent of deep neural networks has pushed traditional Von Neumann architectures to their limits due to the high latency and energy consumption costs associated with data movement between the processor and memory for these workloads. One of the solutions to overcome this bottleneck is to perform computation within the main memory through processing-in-memory (PIM), thereby limiting data movement and the costs associated with it. However, DRAM-based PIM struggles to achieve high throughput and energy efficiency due to internal data movement bottlenecks and the need for frequent refresh operations. In this work, we introduce OPIMA, a PIM-based ML accelerator, architected within an optical main memory. OPIMA has been designed to leverage the inherent massive parallelism within main memory while performing high-speed, low-energy optical computation to accelerate ML models based on convolutional neural networks. We present a comprehensive analysis of OPIMA to guide design choices and operational mechanisms. Additionally, we evaluate the performance and energy consumption of OPIMA, comparing it with conventional electronic computing systems and emerging photonic PIM architectures. The experimental results show that OPIMA can achieve 2.98x higher throughput and 137x better energy efficiency than the best-known prior work.
- Abstract(参考訳): 機械学習(ML)の最近の進歩は、メモリ帯域幅と処理能力のギャップを埋めるコンピューティングアーキテクチャの急激なニーズを浮き彫りにした。
ディープニューラルネットワークの出現により、従来のVon Neumannアーキテクチャは、これらのワークロードのプロセッサとメモリ間のデータ移動に伴うレイテンシとエネルギー消費コストのために、限界に達している。
このボトルネックを克服する解決策の1つは、PIM(Processing-in-Memory)を通じてメインメモリ内で計算を実行することで、データ移動とそれに関連するコストを制限することである。
しかし、DRAMベースのPIMは、内部データ移動のボトルネックと頻繁なリフレッシュ操作の必要性により、高いスループットとエネルギー効率を達成するのに苦労している。
本稿では,PIMベースのMLアクセラレータであるOPIMAについて紹介する。
OPIMAは、畳み込みニューラルネットワークに基づくMLモデルを高速化するために、高速で低エネルギーの光学計算を実行しながら、メインメモリ内の固有の巨大な並列性を活用するように設計されている。
本稿では,OPIMAの総合的な分析を行い,設計選択と運用メカニズムについて考察する。
さらに,OPIMAの性能とエネルギー消費を評価し,従来の電子計算機システムや新しいフォトニックPIMアーキテクチャと比較した。
実験の結果,OPIMAのスループットは2.98倍,エネルギー効率は137倍に向上した。
関連論文リスト
- Memory Is All You Need: An Overview of Compute-in-Memory Architectures for Accelerating Large Language Model Inference [2.9302211589186244]
大規模言語モデル(LLM)は自然言語処理を変換し、機械が人間のようなテキストを生成し、意味のある会話を行うことを可能にする。
計算と記憶能力の発達はムーアの法則の廃止によってさらに悪化している。
コンピュート・イン・メモリ(CIM)技術は、メモリ内でアナログ計算を直接実行することにより、AI推論を加速するための有望なソリューションを提供する。
論文 参考訳(メタデータ) (2024-06-12T16:57:58Z) - Efficient and accurate neural field reconstruction using resistive memory [52.68088466453264]
デジタルコンピュータにおける従来の信号再構成手法は、ソフトウェアとハードウェアの両方の課題に直面している。
本稿では,スパース入力からの信号再構成のためのソフトウェア・ハードウェア協調最適化を用いた体系的アプローチを提案する。
この研究は、AI駆動の信号復元技術を進歩させ、将来の効率的で堅牢な医療AIと3Dビジョンアプリケーションへの道を開く。
論文 参考訳(メタデータ) (2024-04-15T09:33:09Z) - Resistive Memory-based Neural Differential Equation Solver for Score-based Diffusion Model [55.116403765330084]
スコアベースの拡散のような現在のAIGC法は、迅速性と効率性の点で依然として不足している。
スコアベース拡散のための時間連続型およびアナログ型インメモリ型ニューラル微分方程式解法を提案する。
我々は180nmの抵抗型メモリインメモリ・コンピューティング・マクロを用いて,我々の解を実験的に検証した。
論文 参考訳(メタデータ) (2024-04-08T16:34:35Z) - Full-Stack Optimization for CAM-Only DNN Inference [2.0837295518447934]
本稿では,3次重み付けニューラルネットワークと連想プロセッサのアルゴリズム最適化の組み合わせについて検討する。
演算強度を低減し,APの畳み込みを最適化する新しいコンパイルフローを提案する。
本研究では,イメージネット上でのResNet-18推論のエネルギー効率を,クロスバーメモリアクセラレータと比較して7.5倍向上させる。
論文 参考訳(メタデータ) (2024-01-23T10:27:38Z) - Random resistive memory-based deep extreme point learning machine for
unified visual processing [67.51600474104171]
ハードウェア・ソフトウェア共同設計型, ランダム抵抗型メモリベース深部極点学習マシン(DEPLM)を提案する。
我々の共同設計システムは,従来のシステムと比較して,エネルギー効率の大幅な向上とトレーニングコストの削減を実現している。
論文 参考訳(メタデータ) (2023-12-14T09:46:16Z) - EPIM: Efficient Processing-In-Memory Accelerators based on Epitome [78.79382890789607]
畳み込みのような機能を提供する軽量神経オペレータであるEpitomeを紹介する。
ソフトウェア側では,PIMアクセラレータ上でのエピトームのレイテンシとエネルギを評価する。
ハードウェア効率を向上させるため,PIM対応層設計手法を提案する。
論文 参考訳(メタデータ) (2023-11-12T17:56:39Z) - DAISM: Digital Approximate In-SRAM Multiplier-based Accelerator for DNN
Training and Inference [4.718504401468233]
PIMソリューションは、まだ成熟していない新しいメモリ技術か、パフォーマンス上のオーバーヘッドとスケーラビリティの問題のあるビットシリアル計算に依存している。
本稿では,従来のメモリを用いてビット並列計算を行い,複数のワードラインのアクティベーションを利用する,SRAM内デジタル乗算器を提案する。
次に、この乗算器を利用したアーキテクチャであるDAISMを導入し、SOTAと比較して最大2桁高い面積効率を実現し、競争エネルギー効率を向上する。
論文 参考訳(メタデータ) (2023-05-12T10:58:21Z) - Heterogeneous Data-Centric Architectures for Modern Data-Intensive
Applications: Case Studies in Machine Learning and Databases [9.927754948343326]
Processing-in-Memory(PIM)は、現代のアプリケーションにおけるデータ移動のボトルネックを軽減する、有望な実行パラダイムである。
本稿では,2つの現代的なデータ集約型アプリケーションに対して,PIMパラダイムの活用方法を示す。
論文 参考訳(メタデータ) (2022-05-29T13:43:17Z) - Towards Memory-Efficient Neural Networks via Multi-Level in situ
Generation [10.563649948220371]
ディープニューラルネットワーク(DNN)は、様々なタスクにおいて優れたパフォーマンスを示している。
それらが急速に進化するにつれて、そのエスカレーション計算とメモリ要求により、リソースに制約のあるエッジデバイスへのデプロイが困難になる。
超高速なオンチップ計算で高価なメモリトランザクションを交換するための汎用的で統一的なフレームワークを提案する。
論文 参考訳(メタデータ) (2021-08-25T18:50:24Z) - SmartDeal: Re-Modeling Deep Network Weights for Efficient Inference and
Training [82.35376405568975]
ディープニューラルネットワーク(DNN)は重いパラメータ化を伴い、ストレージ用の外部動的ランダムアクセスメモリ(DRAM)につながります。
We present SmartDeal (SD), a algorithm framework to trade high-cost memory storage/ access for lower-cost compute。
SDは貯蔵および訓練エネルギーの10.56xそして4.48x減少、最先端の訓練のベースラインと比較される無視可能な正確さの損失をもたらすことを示します。
論文 参考訳(メタデータ) (2021-01-04T18:54:07Z) - One-step regression and classification with crosspoint resistive memory
arrays [62.997667081978825]
高速で低エネルギーのコンピュータは、エッジでリアルタイム人工知能を実現するために要求されている。
ワンステップ学習は、ボストンの住宅のコスト予測と、MNIST桁認識のための2層ニューラルネットワークのトレーニングによって支援される。
結果は、クロスポイントアレイ内の物理計算、並列計算、アナログ計算のおかげで、1つの計算ステップで得られる。
論文 参考訳(メタデータ) (2020-05-05T08:00:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。