Monitoring and Adapting ML Models on Mobile Devices
- URL: http://arxiv.org/abs/2305.07772v2
- Date: Wed, 17 May 2023 14:34:00 GMT
- Title: Monitoring and Adapting ML Models on Mobile Devices
- Authors: Wei Hao, Zixi Wang, Lauren Hong, Lingxiao Li, Nader Karayanni,
Chengzhi Mao, Junfeng Yang, and Asaf Cidon
- Abstract summary: We design the first end-to-end system for continuously monitoring and adapting models on mobile devices without requiring feedback from users.
Our key observation is that often model degradation is due to a specific root cause, which may affect a large group of devices.
We evaluate the system on two computer vision datasets, and show it consistently boosts accuracy compared to existing approaches.
- Score: 17.28565076128893
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: ML models are increasingly being pushed to mobile devices, for low-latency
inference and offline operation. However, once the models are deployed, it is
hard for ML operators to track their accuracy, which can degrade unpredictably
(e.g., due to data drift). We design the first end-to-end system for
continuously monitoring and adapting models on mobile devices without requiring
feedback from users. Our key observation is that often model degradation is due
to a specific root cause, which may affect a large group of devices. Therefore,
once the system detects a consistent degradation across a large number of
devices, it employs a root cause analysis to determine the origin of the
problem and applies a cause-specific adaptation. We evaluate the system on two
computer vision datasets, and show it consistently boosts accuracy compared to
existing approaches. On a dataset containing photos collected from driving
cars, our system improves the accuracy on average by 15%.
Related papers
- Uncertainty Estimation for 3D Object Detection via Evidential Learning [63.61283174146648]
We introduce a framework for quantifying uncertainty in 3D object detection by leveraging an evidential learning loss on Bird's Eye View representations in the 3D detector.
We demonstrate both the efficacy and importance of these uncertainty estimates on identifying out-of-distribution scenes, poorly localized objects, and missing (false negative) detections.
arXiv Detail & Related papers (2024-10-31T13:13:32Z) - A Systematic Review of Machine Learning Approaches for Detecting Deceptive Activities on Social Media: Methods, Challenges, and Biases [0.037693031068634524]
This systematic review evaluates studies that apply machine learning (ML) and deep learning (DL) models to detect fake news, spam, and fake accounts on social media.
arXiv Detail & Related papers (2024-10-26T23:55:50Z) - Real-Time Anomaly Detection and Reactive Planning with Large Language Models [18.57162998677491]
Foundation models, e.g., large language models (LLMs), trained on internet-scale data possess zero-shot capabilities.
We present a two-stage reasoning framework that incorporates the judgement regarding potential anomalies into a safe control framework.
This enables our monitor to improve the trustworthiness of dynamic robotic systems, such as quadrotors or autonomous vehicles.
arXiv Detail & Related papers (2024-07-11T17:59:22Z) - Active Inference on the Edge: A Design Study [5.815300670677979]
Active Inference (ACI) is a concept from neuroscience that describes how the brain constantly predicts and evaluates sensory information to decrease long-term surprise.
We show how our ACI agent was able to quickly and traceably solve an optimization problem while fulfilling requirements.
arXiv Detail & Related papers (2023-11-17T16:03:04Z) - A hybrid feature learning approach based on convolutional kernels for
ATM fault prediction using event-log data [5.859431341476405]
We present a predictive model based on a convolutional kernel (MiniROCKET and HYDRA) to extract features from event-log data.
The proposed methodology is applied to a significant real-world collected dataset.
The model was integrated into a container-based decision support system to support operators in the timely maintenance of ATMs.
arXiv Detail & Related papers (2023-05-17T08:55:53Z) - Confidence Attention and Generalization Enhanced Distillation for
Continuous Video Domain Adaptation [62.458968086881555]
Continuous Video Domain Adaptation (CVDA) is a scenario where a source model is required to adapt to a series of individually available changing target domains.
We propose a Confidence-Attentive network with geneRalization enhanced self-knowledge disTillation (CART) to address the challenge in CVDA.
arXiv Detail & Related papers (2023-03-18T16:40:10Z) - An Outlier Exposure Approach to Improve Visual Anomaly Detection
Performance for Mobile Robots [76.36017224414523]
We consider the problem of building visual anomaly detection systems for mobile robots.
Standard anomaly detection models are trained using large datasets composed only of non-anomalous data.
We tackle the problem of exploiting these data to improve the performance of a Real-NVP anomaly detection model.
arXiv Detail & Related papers (2022-09-20T15:18:13Z) - Visual-tactile sensing for Real-time liquid Volume Estimation in
Grasping [58.50342759993186]
We propose a visuo-tactile model for realtime estimation of the liquid inside a deformable container.
We fuse two sensory modalities, i.e., the raw visual inputs from the RGB camera and the tactile cues from our specific tactile sensor.
The robotic system is well controlled and adjusted based on the estimation model in real time.
arXiv Detail & Related papers (2022-02-23T13:38:31Z) - Causal Scene BERT: Improving object detection by searching for
challenging groups of data [125.40669814080047]
Computer vision applications rely on learning-based perception modules parameterized with neural networks for tasks like object detection.
These modules frequently have low expected error overall but high error on atypical groups of data due to biases inherent in the training process.
Our main contribution is a pseudo-automatic method to discover such groups in foresight by performing causal interventions on simulated scenes.
arXiv Detail & Related papers (2022-02-08T05:14:16Z) - FairCanary: Rapid Continuous Explainable Fairness [8.362098382773265]
We present Quantile Demographic Drift (QDD), a novel model bias quantification metric.
QDD is ideal for continuous monitoring scenarios, does not suffer from the statistical limitations of conventional threshold-based bias metrics.
We incorporate QDD into a continuous model monitoring system, called FairCanary, that reuses existing explanations computed for each individual prediction.
arXiv Detail & Related papers (2021-06-13T17:47:44Z) - Robust and Transferable Anomaly Detection in Log Data using Pre-Trained
Language Models [59.04636530383049]
Anomalies or failures in large computer systems, such as the cloud, have an impact on a large number of users.
We propose a framework for anomaly detection in log data, as a major troubleshooting source of system information.
arXiv Detail & Related papers (2021-02-23T09:17:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.