論文の概要: TIPS: Topologically Important Path Sampling for Anytime Neural Networks
- arxiv url: http://arxiv.org/abs/2305.08021v2
- Date: Mon, 19 Jun 2023 15:32:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-22 02:23:28.472655
- Title: TIPS: Topologically Important Path Sampling for Anytime Neural Networks
- Title(参考訳): ヒント: 時間的ニューラルネットワークのためのトポロジカルに重要な経路サンプリング
- Authors: Guihong Li, Kartikeya Bhardwaj, Yuedong Yang, Radu Marculescu
- Abstract要約: 我々は,様々なハードウェア制約下でAnytimeNNを自動設計するフレームワークであるTIPSを提案する。
TIPSは複数のデータセットで精度を2%-6.6%改善し、SOTAの精度-FLOPのトレードオフを達成する。
- 参考スコア(独自算出の注目度): 17.139381064317778
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Anytime neural networks (AnytimeNNs) are a promising solution to adaptively
adjust the model complexity at runtime under various hardware resource
constraints. However, the manually-designed AnytimeNNs are biased by designers'
prior experience and thus provide sub-optimal solutions. To address the
limitations of existing hand-crafted approaches, we first model the training
process of AnytimeNNs as a discrete-time Markov chain (DTMC) and use it to
identify the paths that contribute the most to the training of AnytimeNNs.
Based on this new DTMC-based analysis, we further propose TIPS, a framework to
automatically design AnytimeNNs under various hardware constraints. Our
experimental results show that TIPS can improve the convergence rate and test
accuracy of AnytimeNNs. Compared to the existing AnytimeNNs approaches, TIPS
improves the accuracy by 2%-6.6% on multiple datasets and achieves SOTA
accuracy-FLOPs tradeoffs.
- Abstract(参考訳): anytime neural network(anytimenns)は、さまざまなハードウェアリソース制約下で実行時にモデルの複雑さを適応的に調整するための有望なソリューションである。
しかし、手動設計のAnytimeNNはデザイナの事前経験に偏りがあり、したがって準最適ソリューションを提供する。
既存の手作りアプローチの限界に対処するために、我々は最初にanytimennsのトレーニングプロセスを離散時間マルコフ連鎖(dtmc)としてモデル化し、anytimennsのトレーニングに最も寄与する経路を特定するためにそれを使用する。
この新たなDTMCに基づく分析に基づいて,様々なハードウェア制約下でAnytimeNNを自動設計するフレームワークであるTIPSを提案する。
実験の結果,TIPSはAnytimeNNの収束率とテスト精度を向上させることができることがわかった。
既存のAnytimeNNのアプローチと比較して、TIPSは複数のデータセットで精度を2%-6.6%向上し、SOTAの精度-FLOPのトレードオフを達成する。
関連論文リスト
- FTBC: Forward Temporal Bias Correction for Optimizing ANN-SNN Conversion [16.9748086865693]
Spiking Neural Networks(SNN)は、ニューラルネットワーク(ANN)と比較して、エネルギー効率の高いコンピューティングのための有望な道を提供する
本稿では,計算オーバーヘッドを伴わずに変換精度を向上させることを目的とした,FTBC(Forward Temporal Bias)技術を紹介する。
さらに,前方通過のみの時間偏差を求めるアルゴリズムを提案し,逆伝播の計算負担を軽減した。
論文 参考訳(メタデータ) (2024-03-27T09:25:20Z) - Auto-Train-Once: Controller Network Guided Automatic Network Pruning from Scratch [72.26822499434446]
オートトレインオース (Auto-Train-Once, ATO) は、DNNの計算コストと記憶コストを自動的に削減するために設計された、革新的なネットワークプルーニングアルゴリズムである。
総合的な収束解析と広範な実験を行い,本手法が様々なモデルアーキテクチャにおける最先端性能を実現することを示す。
論文 参考訳(メタデータ) (2024-03-21T02:33:37Z) - Quantized Approximately Orthogonal Recurrent Neural Networks [6.524758376347808]
ORNNにおける重み行列の量子化を探求し、ほぼ直交RNN(QORNN)を量子化する。
本稿では,量子化学習(QAT)と計算予測を組み合わせた2つのQORNN学習手法を提案する。
最も効率的なモデルは、4ビットの量子化であっても、様々な標準ベンチマークで最先端のフル精度ORNN、LSTM、FastRNNと同様の結果が得られる。
論文 参考訳(メタデータ) (2024-02-05T09:59:57Z) - Recurrent Bilinear Optimization for Binary Neural Networks [58.972212365275595]
BNNは、実数値重みとスケールファクターの内在的双線型関係を無視している。
私たちの仕事は、双線形の観点からBNNを最適化する最初の試みです。
我々は、様々なモデルやデータセット上で最先端のBNNに対して印象的な性能を示す頑健なRBONNを得る。
論文 参考訳(メタデータ) (2022-09-04T06:45:33Z) - Rethinking Pretraining as a Bridge from ANNs to SNNs [13.984523794353477]
スパイキングニューラルネットワーク(SNN)は、特有の特徴を持つ脳にインスパイアされた典型的なモデルとして知られている。
高い精度のモデルを得る方法は、常にSNNの分野における主要な課題である。
論文 参考訳(メタデータ) (2022-03-02T14:59:57Z) - Can Deep Neural Networks be Converted to Ultra Low-Latency Spiking
Neural Networks? [3.2108350580418166]
スパイクニューラルネットワーク(SNN)は、時間とともに分散されたバイナリスパイクを介して動作する。
SNNのためのSOTAトレーニング戦略は、非スパイキングディープニューラルネットワーク(DNN)からの変換を伴う
そこで本研究では,DNNと変換SNNの誤差を最小限に抑えながら,これらの分布を正確にキャプチャする新たなトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-12-22T18:47:45Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
本稿では,アーキテクチャ検索を対象ハードウェアから切り離すための時間推定フレームワークを提案する。
提案手法は,マイクロカーネルと多層ベンチマークからモデルの集合を抽出し,マッピングとネットワーク実行時間推定のためのスタックモデルを生成する。
生成した混合モデルの推定精度と忠実度, 統計モデルとルーフラインモデル, 評価のための洗練されたルーフラインモデルを比較した。
論文 参考訳(メタデータ) (2021-05-07T11:39:05Z) - Temporal Calibrated Regularization for Robust Noisy Label Learning [60.90967240168525]
ディープニューラルネットワーク(DNN)は、大規模な注釈付きデータセットの助けを借りて、多くのタスクで大きな成功を収めている。
しかし、大規模なデータのラベル付けは非常にコストがかかりエラーが発生しやすいため、アノテーションの品質を保証することは困難である。
本稿では,従来のラベルと予測を併用したTCR(Temporal Calibrated Regularization)を提案する。
論文 参考訳(メタデータ) (2020-07-01T04:48:49Z) - Exploring Pre-training with Alignments for RNN Transducer based
End-to-End Speech Recognition [39.497407288772386]
リカレントニューラルネットワークトランスデューサ(RNN-T)アーキテクチャは、エンドツーエンドの自動音声認識研究において、新たなトレンドとなっている。
本研究では、外部アライメントを活用してRNN-Tモデルをシードする。
エンコーダ事前学習(encoder pre-training)と全ネットワーク事前学習( whole-network pre-training)と呼ばれる2つの異なる事前学習ソリューションが検討されている。
論文 参考訳(メタデータ) (2020-05-01T19:00:57Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoTデバイスは複雑なディープニューラルネットワーク(DNN)モデルにはほとんど余裕がなく、異常検出タスクをクラウドにオフロードすることは長い遅延を引き起こす。
本稿では,分散階層エッジコンピューティング(HEC)システムを対象とした適応型異常検出手法のデモと構築を行う。
提案手法は,検出タスクをクラウドにオフロードした場合と比較して,精度を犠牲にすることなく検出遅延を著しく低減することを示す。
論文 参考訳(メタデータ) (2020-04-15T06:13:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。