論文の概要: A Survey of Federated Evaluation in Federated Learning
- arxiv url: http://arxiv.org/abs/2305.08070v2
- Date: Fri, 19 May 2023 06:43:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-22 18:05:49.508880
- Title: A Survey of Federated Evaluation in Federated Learning
- Title(参考訳): フェデレーション学習におけるフェデレーション評価に関する調査
- Authors: Behnaz Soltani, Yipeng Zhou, Venus Haghighi, John C.S. Lui
- Abstract要約: 従来の機械学習では、すべてのデータサンプルがサーバによって中央管理されているため、モデル評価を行うのは簡単ではない。
これは、クライアントがデータプライバシを保存するために元のデータを公開しないためです。
統合評価は、クライアントの選択、インセンティブメカニズムの設計、悪意のある攻撃検出などにおいて重要な役割を果たす。
- 参考スコア(独自算出の注目度): 30.56651008584592
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In traditional machine learning, it is trivial to conduct model evaluation
since all data samples are managed centrally by a server. However, model
evaluation becomes a challenging problem in federated learning (FL), which is
called federated evaluation in this work. This is because clients do not expose
their original data to preserve data privacy. Federated evaluation plays a
vital role in client selection, incentive mechanism design, malicious attack
detection, etc. In this paper, we provide the first comprehensive survey of
existing federated evaluation methods. Moreover, we explore various
applications of federated evaluation for enhancing FL performance and finally
present future research directions by envisioning some challenges.
- Abstract(参考訳): 従来の機械学習では、すべてのデータサンプルがサーバによって中央管理されているため、モデル評価を行うのは簡単です。
しかし、モデル評価は、この研究でフェデレーション評価と呼ばれるフェデレーション学習(FL)において難しい問題となっている。
これは、クライアントがデータプライバシを保存するために元のデータを公開しないためです。
フェデレーション評価は、クライアント選択、インセンティブ機構設計、悪意のある攻撃検出などにおいて重要な役割を果たす。
本稿では,既存のフェデレーション評価手法の包括的調査を初めて実施する。
さらに,FL性能向上のためのフェデレーション評価の様々な応用について検討し,いくつかの課題を想定して今後の研究の方向性を示す。
関連論文リスト
- FEDLAD: Federated Evaluation of Deep Leakage Attacks and Defenses [50.921333548391345]
フェデレーテッド・ラーニング(Federated Learning)は、分散型機械学習パラダイムをプライバシ保護するものだ。
近年の研究では、Deep Leakageと呼ばれる勾配技術によって、民間の真実データを復元できることが判明している。
本稿では、Deep Leakage攻撃と防御を評価するための総合的なベンチマークであるFEDLAD Framework(Federated Evaluation of Deep Leakage Attacks and Defenses)を紹介する。
論文 参考訳(メタデータ) (2024-11-05T11:42:26Z) - FedCert: Federated Accuracy Certification [8.34167718121698]
フェデレートラーニング(FL)は、機械学習モデルを分散的にトレーニングするための強力なパラダイムとして登場した。
従来の研究では、認定精度に基づいて、集中訓練におけるモデルの有効性を評価してきた。
本研究では,FLシステムのロバスト性を評価するためのFedCertという手法を提案する。
論文 参考訳(メタデータ) (2024-10-04T01:19:09Z) - F-Eval: Assessing Fundamental Abilities with Refined Evaluation Methods [102.98899881389211]
F-Evalは、表現、常識、論理などの基本能力を評価するためのバイリンガル評価ベンチマークである。
参照不要な主観的タスクに対しては,APIモデルによるスコアの代替として,新たな評価手法を考案する。
論文 参考訳(メタデータ) (2024-01-26T13:55:32Z) - Data Valuation and Detections in Federated Learning [4.899818550820576]
フェデレートラーニング(FL)は、生データのプライバシーを維持しながら協調的なモデルトレーニングを可能にする。
このフレームワークの課題は、データの公平かつ効率的な評価であり、FLタスクで高品質なデータを提供するためにクライアントにインセンティブを与えるのに不可欠である。
本稿では,FLタスクにおける事前学習アルゴリズムを使わずに,クライアントのコントリビューションを評価し,関連するデータセットを選択するための新たなプライバシ保護手法を提案する。
論文 参考訳(メタデータ) (2023-11-09T12:01:32Z) - A Comprehensive Study on Model Initialization Techniques Ensuring
Efficient Federated Learning [0.0]
フェデレートラーニング(FL)は、分散とプライバシ保護の方法で機械学習モデルをトレーニングするための有望なパラダイムとして登場した。
モデルに使用される手法の選択は、フェデレーション学習システムの性能、収束速度、通信効率、プライバシー保証において重要な役割を果たす。
本研究は,各手法のメリットとデメリットを慎重に比較,分類,記述し,さまざまなFLシナリオに適用性について検討する。
論文 参考訳(メタデータ) (2023-10-31T23:26:58Z) - A Survey for Federated Learning Evaluations: Goals and Measures [26.120949005265345]
フェデレートラーニング(Federated Learning, FL)は、プライバシ保護機械学習のための新しいパラダイムである。
FLの評価は、その学際的な性質と、実用性、効率性、セキュリティといった様々な目標のために難しい。
我々はFLアルゴリズムの標準化された総合的な評価フレームワークを提供するオープンソースプラットフォームであるFedEvalを紹介した。
論文 参考訳(メタデータ) (2023-08-23T00:17:51Z) - A Call to Reflect on Evaluation Practices for Failure Detection in Image
Classification [0.491574468325115]
本稿では,信頼度評価関数のベンチマーク化を初めて実現した大規模実証的研究について述べる。
簡便なソフトマックス応答ベースラインを全体の最高の実行方法として明らかにすることは、現在の評価の劇的な欠点を浮き彫りにする。
論文 参考訳(メタデータ) (2022-11-28T12:25:27Z) - Towards Fair Federated Learning with Zero-Shot Data Augmentation [123.37082242750866]
フェデレーション学習は重要な分散学習パラダイムとして登場し、サーバはクライアントデータにアクセスせずに、多くのクライアントがトレーニングしたモデルからグローバルモデルを集約する。
本稿では, 統計的不均一性を緩和し, フェデレートネットワークにおけるクライアント間での精度向上を図るために, ゼロショットデータ拡張を用いた新しいフェデレーション学習システムを提案する。
Fed-ZDAC (クライアントでのゼロショットデータ拡張によるフェデレーション学習) と Fed-ZDAS (サーバでのゼロショットデータ拡張によるフェデレーション学習) の2種類について検討する。
論文 参考訳(メタデータ) (2021-04-27T18:23:54Z) - Towards Automatic Evaluation of Dialog Systems: A Model-Free Off-Policy
Evaluation Approach [84.02388020258141]
強化学習におけるオフポリシ評価に基づく人間評価スコア推定のための新しいフレームワークであるENIGMAを提案する。
ENIGMAはいくつかの事前収集された経験データしか必要としないため、評価中にターゲットポリシーとのヒューマンインタラクションは不要である。
実験の結果,ENIGMAは人間の評価スコアと相関して既存手法よりも有意に優れていた。
論文 参考訳(メタデータ) (2021-02-20T03:29:20Z) - Robustness Gym: Unifying the NLP Evaluation Landscape [91.80175115162218]
ディープニューラルネットワークは、現実のシステムにデプロイすると脆くなることが多い。
最近の研究は、そのようなモデルの堅牢性をテストすることに重点を置いている。
単純かつ評価可能なツールキットであるRobustness Gymの形で解を提案する。
論文 参考訳(メタデータ) (2021-01-13T02:37:54Z) - Toward Understanding the Influence of Individual Clients in Federated
Learning [52.07734799278535]
フェデレーションラーニングにより、クライアントはプライベートデータを中央サーバーに送信することなく、グローバルモデルを共同でトレーニングできます。
em-Influenceという新しい概念を定義し、パラメータに対するこの影響を定量化し、このメトリクスを推定する効果的な効率的なモデルを提案しました。
論文 参考訳(メタデータ) (2020-12-20T14:34:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。