Side-channel-secure quantum key distribution
- URL: http://arxiv.org/abs/2305.08148v2
- Date: Sat, 20 May 2023 13:16:52 GMT
- Title: Side-channel-secure quantum key distribution
- Authors: Cong Jiang and Xiao-Long Hu and Zong-Wen Yu and Xiang-Bin Wang
- Abstract summary: We present a side-channel-secure (SCS) quantum key distribution (QKD) under fully realistic conditions.
Our result is not only measurement-device independent but also effective with imperfect (and unstable) source devices.
We also present an improved method for SCS protocols which can raise the key rate by 1-2 orders of magnitude.
- Score: 0.9749560288448115
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a result of side-channel-secure (SCS) quantum key distribution
(QKD) under fully realistic conditions. Our result is not only
measurement-device independent but also effective with imperfect (and unstable)
source devices including imperfect vacuum and imperfect coherent-state source.
Applying the virtual mapping idea, we present a general security proof under
whatever out-side-lab attack, including whatever side-channel coherent attack.
As a byproduct, we also present an improved method for SCS protocols which can
raise the key rate by 1-2 orders of magnitude. Using these results, we obtain a
non-asymptotic key rate which is instantly useful with full realistic
conditions.
Related papers
- Secure One-Sided Device-Independent Quantum Key Distribution Under Collective Attacks with Enhanced Robustness [0.0]
We study the security of a quantum key distribution protocol under the one-sided device-independent (1sDI) setting.<n>We show that the protocol tolerates higher quantum bit error rates (QBER) than present DI-QKD protocols.
arXiv Detail & Related papers (2025-07-24T18:47:04Z) - Free-Space Twin-Field Quantum Key Distribution [25.413253805419494]
We report the first experimental demonstration of free-space TF-QKD over 14.2 km urban atmospheric channels.
We achieve a secret key rate exceeding the repeaterless capacity bound.
This work represents a pivotal advance toward satellite-based global quantum networks.
arXiv Detail & Related papers (2025-03-22T12:05:07Z) - Loss-tolerant quantum key distribution with detection efficiency mismatch [39.58317527488534]
We establish a security proof for the loss-tolerant P&M QKD protocol that incorporates imperfections in both the source and the detectors.
Specifically, we demonstrate the security of this scheme when the emitted states deviate from the ideal ones.
arXiv Detail & Related papers (2024-12-12T19:01:56Z) - Efficient source-independent quantum conference key agreement [25.617190829449893]
Quantum conference key agreement (QCKA) enables the unconditional secure distribution of conference keys among multiple participants.
We propose a source-independent QCKA scheme utilizing the post-matching method.
We introduce an equivalent distributing virtual multi-photon entanglement protocol for providing the unconditional security proof.
arXiv Detail & Related papers (2024-06-25T04:24:06Z) - Eurasian-Scale Experimental Satellite-based Quantum Key Distribution
with Detector Efficiency Mismatch Analysis [32.33017977520031]
We report on the results of the 600-mm-aperture ground station design which has enabled the establishment of a quantum-secured link between the Zvenigorod and Nanshan ground stations using the Micius satellite.
As a result of a quantum communications session, an overall sifted key of 2.5 Mbits and a total final key length of 310 kbits have been obtained.
arXiv Detail & Related papers (2023-10-26T15:26:48Z) - Security of the decoy-state BB84 protocol with imperfect state
preparation [0.0]
We study the security of the efficient decoy-state BB84 QKD protocol in the presence of source flaws.
We investigate the non-Poissonian photon-number statistics due to coherent-state intensity fluctuations and the basis-dependence of the source due to non-ideal polarization state preparation.
arXiv Detail & Related papers (2023-10-02T19:59:57Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - A security framework for quantum key distribution implementations [1.2815904071470707]
We present a security proof in the finite-key regime against coherent attacks.
Our proof requires minimal state characterization, which facilitates its application to real-life implementations.
arXiv Detail & Related papers (2023-05-10T07:02:32Z) - Fully-Passive Twin-Field Quantum Key Distribution [21.245712027667683]
We propose a fully-passive twin-field quantum key distribution (QKD) setup where basis choice, decoy-state preparation and encoding are all implemented by post-processing.
Our protocol can remove the potential side-channels from both source modulators and detectors.
We show with numerical simulation that the new protocol can still beat the repeaterless bound and provide satisfactory key rate.
arXiv Detail & Related papers (2023-04-24T12:57:39Z) - Phase-Matching Quantum Key Distribution without Intensity Modulation [25.004151934190965]
We propose a phase-matching quantum key distribution protocol without intensity modulation.
Simulation results show that the transmission distance of our protocol could reach 305 km in telecommunication fiber.
Our protocol provides a promising solution for constructing quantum networks.
arXiv Detail & Related papers (2023-03-21T04:32:01Z) - Certified randomness in tight space [28.7482666629286]
We provide a method for certified randomness generation on a small-scale application-ready device.
We demonstrate a 2-qubit photonic device that achieves the highest standard in randomness yet is cut out for real-world applications.
arXiv Detail & Related papers (2023-01-09T17:34:48Z) - Simple and Rigorous Proof Method for the Security of Practical Quantum
Key Distribution in the Single-Qubit Regime Using Mismatched Basis
Measurements [0.2519906683279153]
Quantum key distribution (QKD) protocols aim at allowing two parties to generate a secret shared key.
While many QKD protocols have been proven unconditionally secure in theory, practical security analyses of experimental QKD implementations typically do not take into account all possible loopholes.
We present a simple method of computing secure key rates for any practical implementation of discrete-variable QKD.
arXiv Detail & Related papers (2022-08-29T17:37:58Z) - Improved coherent one-way quantum key distribution for high-loss
channels [0.0]
We present a simple variant of COW-QKD and prove its security in the infinite-key limit.
Remarkably, the resulting key rate of our protocol is comparable with both the existing upper-bound on COW-QKD key rate and the secure key rate of the coherent-state BB84 protocol.
arXiv Detail & Related papers (2022-06-17T00:07:03Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Side-channel-free quantum key distribution with practical devices [0.9749560288448115]
In the original SCFQKD protocol, an important assumption is that Alice and Bob can produce the perfect vacuum pulses.
Due to the finite extinction ratio of the intensity modulators, the perfect vacuum pulse is impossible in practice.
We make the quantum key distribution side-channel secure with real source device which does not emit perfect vacuum pulses.
arXiv Detail & Related papers (2022-05-17T14:57:38Z) - Unbalanced-basis-misalignment tolerant measurement-device-independent
quantum key distribution [22.419105320267523]
Measurement-device-independent quantum key distribution (MDIQKD) is a revolutionary protocol since it is physically immune to all attacks on the detection side.
Some protocols release part of the assumptions in the encoding system to keep the practical security, but the performance would be dramatically reduced.
We present a MDIQKD protocol that requires less knowledge of encoding system to combat the troublesome modulation errors and fluctuations.
arXiv Detail & Related papers (2021-08-27T02:16:20Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.