論文の概要: Diffusion-based Semi-supervised Spectral Algorithm for Regression on Manifolds
- arxiv url: http://arxiv.org/abs/2410.14539v1
- Date: Fri, 18 Oct 2024 15:29:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:26:46.416241
- Title: Diffusion-based Semi-supervised Spectral Algorithm for Regression on Manifolds
- Title(参考訳): 拡散型半教師付き分光法によるマニフォールドの回帰
- Authors: Weichun Xia, Jiaxin Jiang, Lei Shi,
- Abstract要約: 本研究では,高次元データの回帰解析に挑戦する拡散スペクトルアルゴリズムを提案する。
本手法では,熱カーネルの局所的推定特性を用いて,この障害を克服するための適応型データ駆動型アプローチを提案する。
我々のアルゴリズムは完全にデータ駆動方式で動作し、データ固有の多様体構造内で直接動作する。
- 参考スコア(独自算出の注目度): 2.0649432688817444
- License:
- Abstract: We introduce a novel diffusion-based spectral algorithm to tackle regression analysis on high-dimensional data, particularly data embedded within lower-dimensional manifolds. Traditional spectral algorithms often fall short in such contexts, primarily due to the reliance on predetermined kernel functions, which inadequately address the complex structures inherent in manifold-based data. By employing graph Laplacian approximation, our method uses the local estimation property of heat kernel, offering an adaptive, data-driven approach to overcome this obstacle. Another distinct advantage of our algorithm lies in its semi-supervised learning framework, enabling it to fully use the additional unlabeled data. This ability enhances the performance by allowing the algorithm to dig the spectrum and curvature of the data manifold, providing a more comprehensive understanding of the dataset. Moreover, our algorithm performs in an entirely data-driven manner, operating directly within the intrinsic manifold structure of the data, without requiring any predefined manifold information. We provide a convergence analysis of our algorithm. Our findings reveal that the algorithm achieves a convergence rate that depends solely on the intrinsic dimension of the underlying manifold, thereby avoiding the curse of dimensionality associated with the higher ambient dimension.
- Abstract(参考訳): 本稿では,高次元データ,特に低次元多様体に埋め込まれたデータに対する回帰解析に取り組むために,新しい拡散スペクトルアルゴリズムを提案する。
伝統的なスペクトルアルゴリズムは、主に所定のカーネル関数に依存しており、多様体ベースのデータに固有の複雑な構造を不十分に扱うため、そのような文脈では不足することが多い。
グラフラプラシアン近似を用いることで,本手法は熱カーネルの局所的推定特性を利用して,この障害を克服するための適応的データ駆動型アプローチを提供する。
私たちのアルゴリズムのもうひとつのメリットは、半教師付き学習フレームワークであり、追加のラベル付きデータを完全に使用できることです。
この能力は、アルゴリズムがデータ多様体のスペクトルと曲率を掘り下げ、データセットをより包括的に理解することで、パフォーマンスを向上させる。
さらに,本アルゴリズムは完全にデータ駆動方式で動作し,事前定義された多様体情報を必要とせず,データ固有の多様体構造内で直接動作する。
アルゴリズムの収束解析を行う。
その結果, このアルゴリズムは, 基礎多様体の内在次元にのみ依存する収束率を達成し, 高い周囲次元に付随する次元の呪いを回避することができることがわかった。
関連論文リスト
- Structured Prediction in Online Learning [66.36004256710824]
オンライン学習環境における構造化予測のための理論的・アルゴリズム的枠組みについて検討する。
このアルゴリズムは教師付き学習環境からの最適アルゴリズムの一般化であることを示す。
本稿では,非定常データ分布,特に逆データを含む2番目のアルゴリズムについて考察する。
論文 参考訳(メタデータ) (2024-06-18T07:45:02Z) - Datacube segmentation via Deep Spectral Clustering [76.48544221010424]
拡張ビジョン技術は、しばしばその解釈に挑戦する。
データ立方体スペクトルの巨大な次元性は、その統計的解釈において複雑なタスクを生じさせる。
本稿では,符号化空間における教師なしクラスタリング手法の適用の可能性について検討する。
統計的次元削減はアドホック訓練(可変)オートエンコーダで行い、クラスタリング処理は(学習可能な)反復K-Meansクラスタリングアルゴリズムで行う。
論文 参考訳(メタデータ) (2024-01-31T09:31:28Z) - Integral Operator Approaches for Scattered Data Fitting on Spheres [16.389581549801253]
重み付きスペクトルフィルタアルゴリズムの近似性能について検討する。
重み付きスペクトルフィルタアルゴリズムのソボレフ型誤差推定を最適に導出する。
論文 参考訳(メタデータ) (2024-01-27T04:42:50Z) - A Heat Diffusion Perspective on Geodesic Preserving Dimensionality
Reduction [66.21060114843202]
熱測地線埋め込みと呼ばれるより一般的な熱カーネルベースの多様体埋め込み法を提案する。
その結果,本手法は,地中真理多様体距離の保存において,既存の技術よりも優れていることがわかった。
また,連続体とクラスタ構造を併用した単一セルRNAシークエンシングデータセットに本手法を適用した。
論文 参考訳(メタデータ) (2023-05-30T13:58:50Z) - Learning Structure Aware Deep Spectral Embedding [11.509692423756448]
本稿では, スペクトル埋込み損失と構造保存損失を組み合わせ, 深層スペクトルの埋込みを考慮した新しい構造解析手法を提案する。
両タイプの情報を同時に符号化し,構造認識型スペクトル埋め込みを生成するディープニューラルネットワークアーキテクチャを提案する。
提案アルゴリズムは,公開されている6つの実世界のデータセットを用いて評価する。
論文 参考訳(メタデータ) (2023-05-14T18:18:05Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
我々は、従来のEMベースのアルゴリズムを拡張するための全体的なデータの特徴付けを導出する。
新しいアルゴリズムは、そのような混合データソースからモデルパラメータの(不特定性)領域を近似することを学ぶ。
反実的な結果に間隔近似を与え、それが特定可能な場合の点に崩壊する。
論文 参考訳(メタデータ) (2022-12-06T12:42:11Z) - Learning Low-Dimensional Nonlinear Structures from High-Dimensional
Noisy Data: An Integral Operator Approach [5.975670441166475]
本研究では,高次元および雑音観測から低次元非線形構造を学習するためのカーネルスペクトル埋め込みアルゴリズムを提案する。
このアルゴリズムは、基礎となる多様体の事前の知識に依存しない適応的な帯域幅選択手順を用いる。
得られた低次元埋め込みは、データ可視化、クラスタリング、予測などの下流目的にさらに活用することができる。
論文 参考訳(メタデータ) (2022-02-28T22:46:34Z) - ExClus: Explainable Clustering on Low-dimensional Data Representations [9.496898312608307]
次元の減少とクラスタリング技術は複雑なデータセットの分析に頻繁に使用されるが、それらの結果は容易には解釈できないことが多い。
本研究では, 直接解釈できない散乱プロット上で, クラスタ構造を解釈する際のユーザ支援について検討する。
本稿では,解釈可能なクラスタリングを自動的に計算する新しい手法を提案し,その説明は元の高次元空間にあり,クラスタリングは低次元射影においてコヒーレントである。
論文 参考訳(メタデータ) (2021-11-04T21:24:01Z) - Inferring Manifolds From Noisy Data Using Gaussian Processes [17.166283428199634]
ほとんどの既存の多様体学習アルゴリズムは、元のデータを低次元座標で置き換える。
本稿では,これらの問題に対処するための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-10-14T15:50:38Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
最適化アルゴリズムの一般化誤差は、その一般化尺度の根底にあるフラクタル構造の複雑性'にバウンドできることを示す。
さらに、特定の問題(リニア/ロジスティックレグレッション、隠れ/層ニューラルネットワークなど)とアルゴリズムに対して、結果をさらに専門化します。
論文 参考訳(メタデータ) (2021-06-09T08:05:36Z) - Manifold Learning via Manifold Deflation [105.7418091051558]
次元削減法は、高次元データの可視化と解釈に有用な手段を提供する。
多くの一般的な手法は単純な2次元のマニフォールドでも劇的に失敗する。
本稿では,グローバルな構造を座標として組み込んだ,新しいインクリメンタルな空間推定器の埋め込み手法を提案する。
実験により,本アルゴリズムは実世界および合成データセットに新規で興味深い埋め込みを復元することを示した。
論文 参考訳(メタデータ) (2020-07-07T10:04:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。