SemiGNN-PPI: Self-Ensembling Multi-Graph Neural Network for Efficient
and Generalizable Protein-Protein Interaction Prediction
- URL: http://arxiv.org/abs/2305.08316v1
- Date: Mon, 15 May 2023 03:06:44 GMT
- Title: SemiGNN-PPI: Self-Ensembling Multi-Graph Neural Network for Efficient
and Generalizable Protein-Protein Interaction Prediction
- Authors: Ziyuan Zhao, Peisheng Qian, Xulei Yang, Zeng Zeng, Cuntai Guan, Wai
Leong Tam, Xiaoli Li
- Abstract summary: Protein-protein interactions (PPIs) are crucial in various biological processes and their study has significant implications for drug development and disease diagnosis.
Existing deep learning methods suffer from significant performance degradation under complex real-world scenarios.
We propose a self-ensembling multigraph neural network (SemiGNN-PPI) that can effectively predict PPIs while being both efficient and generalizable.
- Score: 16.203794286288815
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Protein-protein interactions (PPIs) are crucial in various biological
processes and their study has significant implications for drug development and
disease diagnosis. Existing deep learning methods suffer from significant
performance degradation under complex real-world scenarios due to various
factors, e.g., label scarcity and domain shift. In this paper, we propose a
self-ensembling multigraph neural network (SemiGNN-PPI) that can effectively
predict PPIs while being both efficient and generalizable. In SemiGNN-PPI, we
not only model the protein correlations but explore the label dependencies by
constructing and processing multiple graphs from the perspectives of both
features and labels in the graph learning process. We further marry GNN with
Mean Teacher to effectively leverage unlabeled graph-structured PPI data for
self-ensemble graph learning. We also design multiple graph consistency
constraints to align the student and teacher graphs in the feature embedding
space, enabling the student model to better learn from the teacher model by
incorporating more relationships. Extensive experiments on PPI datasets of
different scales with different evaluation settings demonstrate that
SemiGNN-PPI outperforms state-of-the-art PPI prediction methods, particularly
in challenging scenarios such as training with limited annotations and testing
on unseen data.
Related papers
- Learning From Graph-Structured Data: Addressing Design Issues and Exploring Practical Applications in Graph Representation Learning [2.492884361833709]
We present an exhaustive review of the latest advancements in graph representation learning and Graph Neural Networks (GNNs)
GNNs, tailored to handle graph-structured data, excel in deriving insights and predictions from intricate relational information.
Our work delves into the capabilities of GNNs, examining their foundational designs and their application in addressing real-world challenges.
arXiv Detail & Related papers (2024-11-09T19:10:33Z) - Towards Graph Prompt Learning: A Survey and Beyond [38.55555996765227]
Large-scale "pre-train and prompt learning" paradigms have demonstrated remarkable adaptability.
This survey categorizes over 100 relevant works in this field, summarizing general design principles and the latest applications.
arXiv Detail & Related papers (2024-08-26T06:36:42Z) - Extracting Protein-Protein Interactions (PPIs) from Biomedical
Literature using Attention-based Relational Context Information [5.456047952635665]
This work presents a unified, multi-source PPI corpora with vetted interaction definitions augmented by binary interaction type labels.
A Transformer-based deep learning method exploits entities' relational context information for relation representation to improve relation classification performance.
The model's performance is evaluated on four widely studied biomedical relation extraction datasets.
arXiv Detail & Related papers (2024-03-08T01:43:21Z) - Graph-level Protein Representation Learning by Structure Knowledge
Refinement [50.775264276189695]
This paper focuses on learning representation on the whole graph level in an unsupervised manner.
We propose a novel framework called Structure Knowledge Refinement (SKR) which uses data structure to determine the probability of whether a pair is positive or negative.
arXiv Detail & Related papers (2024-01-05T09:05:33Z) - Learning Strong Graph Neural Networks with Weak Information [64.64996100343602]
We develop a principled approach to the problem of graph learning with weak information (GLWI)
We propose D$2$PT, a dual-channel GNN framework that performs long-range information propagation on the input graph with incomplete structure, but also on a global graph that encodes global semantic similarities.
arXiv Detail & Related papers (2023-05-29T04:51:09Z) - Towards Relation-centered Pooling and Convolution for Heterogeneous
Graph Learning Networks [11.421162988355146]
Heterogeneous graph neural network has unleashed great potential on graph representation learning.
We design a relation-centered Pooling and Convolution for Heterogeneous Graph learning Network, namely PC-HGN, to enable relation-specific sampling and cross-relation convolutions.
We evaluate the performance of the proposed model by comparing with state-of-the-art graph learning models on three different real-world datasets.
arXiv Detail & Related papers (2022-10-31T08:43:32Z) - A Supervised Machine Learning Approach for Sequence Based
Protein-protein Interaction (PPI) Prediction [4.916874464940376]
Computational protein-protein interaction (PPI) prediction techniques can contribute greatly in reducing time, cost and false-positive interactions.
We have described our submitted solution with the results of the SeqPIP competition.
arXiv Detail & Related papers (2022-03-23T18:27:25Z) - Graph Structure Learning with Variational Information Bottleneck [70.62851953251253]
We propose a novel Variational Information Bottleneck guided Graph Structure Learning framework, namely VIB-GSL.
VIB-GSL learns an informative and compressive graph structure to distill the actionable information for specific downstream tasks.
arXiv Detail & Related papers (2021-12-16T14:22:13Z) - Model-Agnostic Graph Regularization for Few-Shot Learning [60.64531995451357]
We present a comprehensive study on graph embedded few-shot learning.
We introduce a graph regularization approach that allows a deeper understanding of the impact of incorporating graph information between labels.
Our approach improves the performance of strong base learners by up to 2% on Mini-ImageNet and 6.7% on ImageNet-FS.
arXiv Detail & Related papers (2021-02-14T05:28:13Z) - Cyclic Label Propagation for Graph Semi-supervised Learning [52.102251202186025]
We introduce a novel framework for graph semi-supervised learning called CycProp.
CycProp integrates GNNs into the process of label propagation in a cyclic and mutually reinforcing manner.
In particular, our proposed CycProp updates the node embeddings learned by GNN module with the augmented information by label propagation.
arXiv Detail & Related papers (2020-11-24T02:55:40Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.