論文の概要: Assessing the potential of AI-assisted pragmatic annotation: The case of apologies
- arxiv url: http://arxiv.org/abs/2305.08339v4
- Date: Mon, 18 Mar 2024 09:56:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-21 01:30:29.874227
- Title: Assessing the potential of AI-assisted pragmatic annotation: The case of apologies
- Title(参考訳): AIを用いた実用的アノテーションの可能性評価:謝罪の事例
- Authors: Danni Yu, Luyang Li, Hang Su, Matteo Fuoli,
- Abstract要約: 本研究では,大言語モデル(LLM)を用いたプラグマ離散コーパスアノテーションの自動化について検討する。
そこで我々は,ChatGPT,Bingチャットボット,および人間のコーダを用いて,局所文法フレームワークに基づく英語の謝罪コンポーネントの注釈付けを行った。
結果は、AIをうまくデプロイして、プラグマの分散コーパスアノテーションを補助し、プロセスをより効率的かつスケーラブルにすることができることを示唆している。
- 参考スコア(独自算出の注目度): 9.941695905504282
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Certain forms of linguistic annotation, like part of speech and semantic tagging, can be automated with high accuracy. However, manual annotation is still necessary for complex pragmatic and discursive features that lack a direct mapping to lexical forms. This manual process is time-consuming and error-prone, limiting the scalability of function-to-form approaches in corpus linguistics. To address this, our study explores automating pragma-discursive corpus annotation using large language models (LLMs). We compare ChatGPT, the Bing chatbot, and a human coder in annotating apology components in English based on the local grammar framework. We find that the Bing chatbot outperformed ChatGPT, with accuracy approaching that of a human coder. These results suggest that AI can be successfully deployed to aid pragma-discursive corpus annotation, making the process more efficient and scalable. Keywords: linguistic annotation, function-to-form approaches, large language models, local grammar analysis, Bing chatbot, ChatGPT
- Abstract(参考訳): 音声や意味的タグ付けなどの言語アノテーションの特定の形態は、高精度で自動化することができる。
しかし、語彙形式への直接マッピングが欠如している複雑な実用的・非帰的特徴に対して、手動のアノテーションは依然として必要である。
この手動のプロセスは時間をかけてエラーを起こし、コーパス言語学における関数間アプローチのスケーラビリティを制限する。
そこで本研究では,大規模言語モデル(LLM)を用いたプラグマ離散コーパスアノテーションの自動化について検討した。
局所文法の枠組みに基づいて,ChatGPT,Bingチャットボット,および人間のコーダを英語で注釈付けする。
BingチャットボットはChatGPTより優れており、精度は人間のコーダに近づいた。
これらの結果から,AIは実用的コーパスアノテーションの支援に成功し,プロセスをより効率的かつスケーラブルにすることができることが示唆された。
キーワード:言語アノテーション、関数間アプローチ、大言語モデル、局所文法解析、Bingチャットボット、ChatGPT
関連論文リスト
- Detecting Document-level Paraphrased Machine Generated Content: Mimicking Human Writing Style and Involving Discourse Features [57.34477506004105]
機械生成コンテンツは、学術プラジャリズムや誤報の拡散といった課題を提起する。
これらの課題を克服するために、新しい方法論とデータセットを導入します。
人間の筆記スタイルをエミュレートするエンコーダデコーダモデルであるMhBARTを提案する。
また,PDTB前処理による談話解析を統合し,構造的特徴を符号化するモデルであるDTransformerを提案する。
論文 参考訳(メタデータ) (2024-12-17T08:47:41Z) - GPT Assisted Annotation of Rhetorical and Linguistic Features for Interpretable Propaganda Technique Detection in News Text [1.2699007098398802]
本研究は, 説得の言語に関する文献で同定された22の修辞的, 言語学的特徴を分類した。
WebアプリケーションであるRhetAnnは、そうでなければかなりの精神的な努力を最小限に抑えるように設計されている。
注釈付きデータの小さなセットは、生成的大言語モデル(LLM)であるGPT-3.5を微調整し、残りのデータに注釈を付けた。
論文 参考訳(メタデータ) (2024-07-16T15:15:39Z) - Towards Automating Text Annotation: A Case Study on Semantic Proximity Annotation using GPT-4 [4.40960504549418]
本稿では、自動プロンプトを設計するための注釈付きデータとともに、人間のアノテーションガイドラインを再利用する。
オープンソースのテキストアノテーションツールにプロンプト戦略を実装し、OpenAI APIによるオンライン利用を容易にします。
論文 参考訳(メタデータ) (2024-07-04T19:16:44Z) - Automatic Annotation of Grammaticality in Child-Caregiver Conversations [7.493963534076502]
この研究は、子どもの言語習得を大規模に研究する上で、最先端のNLP手法の適用に関する文献の増大に寄与する。
本稿では,文脈依存型文法の符号化手法を提案し,大規模な会話コーパスから4,000以上の発話を注釈付けする。
以上の結果から,微調整トランスフォーマーを用いたモデルでは,人間間のアノテーション合意レベルを達成できる可能性が示唆された。
論文 参考訳(メタデータ) (2024-03-21T08:00:05Z) - Physics of Language Models: Part 1, Learning Hierarchical Language Structures [51.68385617116854]
トランスフォーマーベースの言語モデルは効率的だが複雑であり、内部動作を理解することは大きな課題である。
本稿では,長文を生成可能な階層規則を生成する合成CFGのファミリーを紹介する。
我々は、GPTのような生成モデルがこのCFG言語を正確に学習し、それに基づいて文を生成することを実証する。
論文 参考訳(メタデータ) (2023-05-23T04:28:16Z) - Towards Computationally Verifiable Semantic Grounding for Language
Models [18.887697890538455]
本論文は、エンティティ関係三重項の集合として形式化された所望のセマンティックメッセージが与えられた条件モデル生成テキストとしてLMを概念化する。
LMを自動エンコーダに埋め込むと、出力が入力メッセージと同じ表現領域にあるセマンティック・フラエンシに出力を送り込む。
提案手法は,グリーディ検索のベースラインを大幅に改善することを示す。
論文 参考訳(メタデータ) (2022-11-16T17:35:52Z) - Prompting Language Models for Linguistic Structure [73.11488464916668]
本稿では,言語構造予測タスクに対する構造化プロンプト手法を提案する。
提案手法は, 音声タグ付け, 名前付きエンティティ認識, 文チャンキングについて評価する。
PLMはタスクラベルの事前知識を事前学習コーパスに漏えいすることで有意な事前知識を含むが、構造化プロンプトは任意のラベルで言語構造を復元することも可能である。
論文 参考訳(メタデータ) (2022-11-15T01:13:39Z) - Bidirectional Language Models Are Also Few-shot Learners [54.37445173284831]
SAP(Sequential Autoregressive Prompting)は,双方向モデルの高速化を実現する技術である。
SAPは質問応答と要約に有効であることを示す。
この結果から,より広範な言語モデルの創発的特性として,プロンプトに基づく学習が証明された。
論文 参考訳(メタデータ) (2022-09-29T01:35:57Z) - Few-Shot Semantic Parsing with Language Models Trained On Code [52.23355024995237]
Codexは同等のGPT-3モデルよりもセマンティックパーシングが優れていることがわかった。
GPT-3とは異なり、Codexは意味表現を直接ターゲットとする場合、おそらく意味解析で使われる意味表現がコードと似た構造になっているように、同じように機能する。
論文 参考訳(メタデータ) (2021-12-16T08:34:06Z) - On The Ingredients of an Effective Zero-shot Semantic Parser [95.01623036661468]
我々は、標準発話とプログラムの訓練例を文法から言い換えて、ゼロショット学習を分析する。
改良された文法,より強力なパラフレーズ,効率的な学習手法を用いて,これらのギャップを埋めることを提案する。
我々のモデルはラベル付きデータゼロの2つの意味解析ベンチマーク(Scholar, Geo)で高い性能を達成する。
論文 参考訳(メタデータ) (2021-10-15T21:41:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。