論文の概要: Legal Extractive Summarization of U.S. Court Opinions
- arxiv url: http://arxiv.org/abs/2305.08428v1
- Date: Mon, 15 May 2023 08:13:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-16 15:29:25.269648
- Title: Legal Extractive Summarization of U.S. Court Opinions
- Title(参考訳): 米国の裁判所意見の法的抽出的要約
- Authors: Emmanuel Bauer, Dominik Stammbach, Nianlong Gu, Elliott Ash
- Abstract要約: 本稿では,430万件の米国裁判所の意見に注釈付きキー文を添付したデータセットを用いて,法的抽出要約の課題に取り組む。
自動要約品質指標によると、強化学習ベースのMemSumモデルが最も優れており、トランスフォーマーベースのモデルよりも優れています。
専門家による人間の評価は、MemSumの要約が長大な法廷意見の要点を効果的に捉えていることを示している。
- 参考スコア(独自算出の注目度): 2.2481339018068596
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper tackles the task of legal extractive summarization using a dataset
of 430K U.S. court opinions with key passages annotated. According to automated
summary quality metrics, the reinforcement-learning-based MemSum model is best
and even out-performs transformer-based models. In turn, expert human
evaluation shows that MemSum summaries effectively capture the key points of
lengthy court opinions. Motivated by these results, we open-source our models
to the general public. This represents progress towards democratizing law and
making U.S. court opinions more accessible to the general public.
- Abstract(参考訳): 本稿では,米国裁判所の430k意見のデータセットに注釈を付した,法的抽出要約の課題について述べる。
自動要約品質指標によると、強化学習ベースのmemsumモデルが最も良く、トランスフォーマーベースのモデルよりも優れています。
専門家による人間の評価は、MemSumの要約が長大な法廷意見の要点を効果的に捉えていることを示している。
これらの結果に動機づけられ、我々はモデルを一般にオープンソース化した。
これは、法を民主化し、アメリカ合衆国裁判所の意見を一般大衆に公開するための進歩を表している。
関連論文リスト
- JudgeRank: Leveraging Large Language Models for Reasoning-Intensive Reranking [81.88787401178378]
本稿では,文書関連性を評価する際に,人間の認知過程をエミュレートする新しいエージェント・リランカであるJiceRankを紹介する。
我々は,推論集約型BRIGHTベンチマークを用いて判定Rankを評価し,第1段階の検索手法よりも性能が大幅に向上したことを示す。
さらに、JiceRankは、人気の高いBEIRベンチマークの細調整された最先端リランカと同等に動作し、ゼロショットの一般化能力を検証している。
論文 参考訳(メタデータ) (2024-10-31T18:43:12Z) - Hybrid Deep Learning for Legal Text Analysis: Predicting Punishment Durations in Indonesian Court Rulings [0.0]
本研究は,文長の深層学習に基づく予測システムを開発した。
我々のモデルは,CNNとBiLSTMとアテンション機構を組み合わせたもので,R2乗のスコアは0.5893。
論文 参考訳(メタデータ) (2024-10-26T07:07:48Z) - Applicability of Large Language Models and Generative Models for Legal Case Judgement Summarization [5.0645491201288495]
近年,抽象的な要約モデルやLarge Language Model (LLM) などの生成モデルが広く普及している。
本稿では,判例判断要約におけるそのようなモデルの適用性について検討する。
論文 参考訳(メタデータ) (2024-07-06T04:49:40Z) - LexAbSumm: Aspect-based Summarization of Legal Decisions [1.3723120574076126]
LexAbSummは、欧州人権裁判所(European Court of Human Rights)の管轄下にある法的判例決定のアスペクトベースの要約のために設計されたデータセットである。
我々は、LexAbSumm上の長いドキュメントに適した抽象的な要約モデルをいくつか評価し、アスペクト固有の要約を生成するためにこれらのモデルを条件付けすることの難しさを明らかにした。
論文 参考訳(メタデータ) (2024-03-31T08:00:40Z) - DELTA: Pre-train a Discriminative Encoder for Legal Case Retrieval via Structural Word Alignment [55.91429725404988]
判例検索のための識別モデルであるDELTAを紹介する。
我々は浅層デコーダを利用して情報ボトルネックを作り、表現能力の向上を目指しています。
本手法は, 判例検索において, 既存の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2024-03-27T10:40:14Z) - Automatic Information Extraction From Employment Tribunal Judgements Using Large Language Models [0.4810407297181484]
本稿では,大規模言語モデルであるGPT-4の英国雇用裁判所事件からの自動情報抽出への応用について述べる。
手動検証プロセスを用いて臨界情報を抽出する際のGPT-4の性能を慎重に評価した。
論文 参考訳(メタデータ) (2024-03-19T17:43:08Z) - Low-Resource Court Judgment Summarization for Common Law Systems [32.13166048504629]
CLSumは,多審理法裁判所判決文書を要約する最初のデータセットである。
これは、データ拡張、要約生成、評価において、大規模言語モデル(LLM)を採用する最初の裁判所判決要約作業である。
論文 参考訳(メタデータ) (2024-03-07T12:47:42Z) - FENICE: Factuality Evaluation of summarization based on Natural language Inference and Claim Extraction [85.26780391682894]
自然言語推論とクレーム抽出(FENICE)に基づく要約のファクチュアリティ評価を提案する。
FENICEは、ソース文書内の情報と、要約から抽出されたクレームと呼ばれる一連の原子的事実との間のNLIベースのアライメントを利用する。
我々の測定基準は、事実性評価のためのデファクトベンチマークであるAGGREFACTに関する新しい技術状況を設定する。
論文 参考訳(メタデータ) (2024-03-04T17:57:18Z) - AugSumm: towards generalizable speech summarization using synthetic
labels from large language model [61.73741195292997]
抽象音声要約(SSUM)は、音声から人間に似た要約を生成することを目的としている。
従来のSSUMモデルは、主に、人間による注釈付き決定論的要約(英語版)を用いて訓練され、評価されている。
AugSummは,人間のアノテータが拡張要約を生成するためのプロキシとして,大規模言語モデル(LLM)を利用する手法である。
論文 参考訳(メタデータ) (2024-01-10T18:39:46Z) - Fair Abstractive Summarization of Diverse Perspectives [103.08300574459783]
公平な要約は、特定のグループを過小評価することなく、多様な視点を包括的にカバーしなければなりません。
はじめに、抽象的な要約における公正性は、いかなる集団の視点にも過小評価されないものとして、正式に定義する。
本研究では,対象視点と対象視点の差を測定することで,基準のない4つの自動計測手法を提案する。
論文 参考訳(メタデータ) (2023-11-14T03:38:55Z) - Leveraging Large Language Models for Topic Classification in the Domain
of Public Affairs [65.9077733300329]
大規模言語モデル (LLM) は公務員文書の分析を大幅に強化する可能性を秘めている。
LLMは、公共の分野など、ドメイン固有のドキュメントを処理するのに非常に役立ちます。
論文 参考訳(メタデータ) (2023-06-05T13:35:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。