論文の概要: Hybrid Deep Learning for Legal Text Analysis: Predicting Punishment Durations in Indonesian Court Rulings
- arxiv url: http://arxiv.org/abs/2410.20104v1
- Date: Sat, 26 Oct 2024 07:07:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:14:39.531657
- Title: Hybrid Deep Learning for Legal Text Analysis: Predicting Punishment Durations in Indonesian Court Rulings
- Title(参考訳): 法的テキスト分析のためのハイブリッド深層学習:インドネシアの裁判所規則における罰則の期間予測
- Authors: Muhammad Amien Ibrahim, Alif Tri Handoyo, Maria Susan Anggreainy,
- Abstract要約: 本研究は,文長の深層学習に基づく予測システムを開発した。
我々のモデルは,CNNとBiLSTMとアテンション機構を組み合わせたもので,R2乗のスコアは0.5893。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Limited public understanding of legal processes and inconsistent verdicts in the Indonesian court system led to widespread dissatisfaction and increased stress on judges. This study addresses these issues by developing a deep learning-based predictive system for court sentence lengths. Our hybrid model, combining CNN and BiLSTM with attention mechanism, achieved an R-squared score of 0.5893, effectively capturing both local patterns and long-term dependencies in legal texts. While document summarization proved ineffective, using only the top 30% most frequent tokens increased prediction performance, suggesting that focusing on core legal terminology balances information retention and computational efficiency. We also implemented a modified text normalization process, addressing common errors like misspellings and incorrectly merged words, which significantly improved the model's performance. These findings have important implications for automating legal document processing, aiding both professionals and the public in understanding court judgments. By leveraging advanced NLP techniques, this research contributes to enhancing transparency and accessibility in the Indonesian legal system, paving the way for more consistent and comprehensible legal decisions.
- Abstract(参考訳): インドネシアの裁判所制度における法的手続きと不一致の評決に対する限定的な大衆の理解は、広く不満を抱き、裁判官へのストレスを増大させた。
本研究は, 文長の深層学習に基づく予測システムを開発することにより, これらの課題に対処する。
我々のハイブリッドモデルでは,CNNとBiLSTMをアテンション機構と組み合わせ,R二乗スコア0.5893を達成し,法文中の局所的パターンと長期的依存関係の両方を効果的に捉えた。
文書要約は効果を示さなかったが、最も頻繁なトークンの上位30%だけを使用することで予測性能が向上し、中核的な法的用語に注目することは情報の保持と計算効率のバランスをとることが示唆された。
また、修正されたテキスト正規化処理を実装し、ミススペルや誤結合語などの一般的なエラーに対処し、モデルの性能を大幅に改善した。
これらの知見は、法的文書処理の自動化に重要な意味を持ち、専門家と一般の双方が判決を理解するのに役立っている。
先進的なNLP技術を活用することにより、インドネシアの法体系における透明性とアクセシビリティの向上に寄与し、より一貫性と理解可能な法的決定の道を開いた。
関連論文リスト
- JudgeRank: Leveraging Large Language Models for Reasoning-Intensive Reranking [81.88787401178378]
本稿では,文書関連性を評価する際に,人間の認知過程をエミュレートする新しいエージェント・リランカであるJiceRankを紹介する。
我々は,推論集約型BRIGHTベンチマークを用いて判定Rankを評価し,第1段階の検索手法よりも性能が大幅に向上したことを示す。
さらに、JiceRankは、人気の高いBEIRベンチマークの細調整された最先端リランカと同等に動作し、ゼロショットの一般化能力を検証している。
論文 参考訳(メタデータ) (2024-10-31T18:43:12Z) - Editable Fairness: Fine-Grained Bias Mitigation in Language Models [52.66450426729818]
個々人の社会的偏見をきめ細かなキャリブレーションを可能にする新しいデバイアス・アプローチであるFairness Stamp(FAST)を提案する。
FASTは最先端のベースラインを超え、デバイアス性能が優れている。
これは、大きな言語モデルにおける公平性を達成するためのきめ細かいデバイアス戦略の可能性を強調している。
論文 参考訳(メタデータ) (2024-08-07T17:14:58Z) - Enabling Discriminative Reasoning in LLMs for Legal Judgment Prediction [23.046342240176575]
人間の推論に触発されたAsk-Discriminate-Predict(ADAPT)推論フレームワークを紹介する。
ADAPTは、ケース事実を分解し、潜在的な電荷を識別し、最終的な判断を予測する。
広く利用されている2つのデータセットに対して行われた実験は、法的な判断予測において、我々のフレームワークの優れた性能を示す。
論文 参考訳(メタデータ) (2024-07-02T05:43:15Z) - Legal Judgment Reimagined: PredEx and the Rise of Intelligent AI Interpretation in Indian Courts [6.339932924789635]
textbfPrediction with textbfExplanation (textttPredEx)は、インドの文脈における法的判断予測と説明のための、専門家による最大のデータセットである。
このコーパスは、法的分析におけるAIモデルのトレーニングと評価を大幅に強化する。
論文 参考訳(メタデータ) (2024-06-06T14:57:48Z) - DELTA: Pre-train a Discriminative Encoder for Legal Case Retrieval via Structural Word Alignment [55.91429725404988]
判例検索のための識別モデルであるDELTAを紹介する。
我々は浅層デコーダを利用して情報ボトルネックを作り、表現能力の向上を目指しています。
本手法は, 判例検索において, 既存の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2024-03-27T10:40:14Z) - Prototype-Based Interpretability for Legal Citation Prediction [16.660004925391842]
我々は、前例と立法規定の両方に関して、弁護士の思考過程と平行してタスクを設計する。
最初の実験結果から,法の専門家のフィードバックを得て,対象の引用予測を洗練する。
我々は,弁護士が使用する決定パラメータに固執しながら,高い性能を達成し,解釈可能性を高めるためのプロトタイプアーキテクチャを導入する。
論文 参考訳(メタデータ) (2023-05-25T21:40:58Z) - Exploiting Contrastive Learning and Numerical Evidence for Confusing
Legal Judgment Prediction [46.71918729837462]
訴訟の事実記述文を考慮し、法的判断予測は、事件の告訴、法律記事、刑期を予測することを目的としている。
従来の研究では、標準的なクロスエントロピー分類損失と異なる分類誤差を区別できなかった。
本稿では,モコに基づく教師付きコントラスト学習を提案する。
さらに,事前学習した数値モデルにより符号化された抽出された犯罪量による事実記述の表現をさらに強化する。
論文 参考訳(メタデータ) (2022-11-15T15:53:56Z) - Legal Judgment Prediction with Multi-Stage CaseRepresentation Learning
in the Real Court Setting [25.53133777558123]
本稿では, 実地裁判所から新たなデータセットを導入し, 法的な判断を合理的に百科事典的に予測する。
大規模な民事裁判データセットを用いた広範な実験は、提案モデルが、法的判断予測のためのクレーム、事実、議論の間の相互作用をより正確に特徴付けることができることを示している。
論文 参考訳(メタデータ) (2021-07-12T04:27:14Z) - Lawformer: A Pre-trained Language Model for Chinese Legal Long Documents [56.40163943394202]
我々は,中国法定長文理解のためのLongformerベースの事前学習言語モデル,Lawformerをリリースする。
判決の予測,類似事例の検索,法的読解,法的質問の回答など,さまざまな法務上の課題について法務担当者を評価した。
論文 参考訳(メタデータ) (2021-05-09T09:39:25Z) - Equality before the Law: Legal Judgment Consistency Analysis for
Fairness [55.91612739713396]
本論文では,LInCo(Legal Inconsistency Coefficient)の判定不整合性評価指標を提案する。
法的な判断予測(LJP)モデルを用いて異なる集団の裁判官をシミュレートし、異なる集団で訓練されたLJPモデルによる判断結果の不一致を判断する。
私達はLInCoを実際の場合の不一致を探検するために使用し、次の観察に来ます:(1)地域およびジェンダーの不一致は法制度でありますが、ジェンダーの不一致は地方不一致より大いにより少しです。
論文 参考訳(メタデータ) (2021-03-25T14:28:00Z) - Distinguish Confusing Law Articles for Legal Judgment Prediction [30.083642130015317]
LJP(Lawal Judgment Prediction)は、その事実を記述したテキストが与えられた場合、訴訟の判断結果を自動的に予測するタスクである。
LJP の課題を解決するために,エンド・ツー・エンドのモデル LADAN を提案する。
論文 参考訳(メタデータ) (2020-04-06T11:09:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。