論文の概要: aUToLights: A Robust Multi-Camera Traffic Light Detection and Tracking
System
- arxiv url: http://arxiv.org/abs/2305.08673v1
- Date: Mon, 15 May 2023 14:28:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-16 14:15:13.177011
- Title: aUToLights: A Robust Multi-Camera Traffic Light Detection and Tracking
System
- Title(参考訳): aUToLights:ロバストなマルチカメラ交通光検出・追跡システム
- Authors: Sean Wu and Nicole Amenta and Jiachen Zhou and Sandro Papais and
Jonathan Kelly
- Abstract要約: 我々は、トロント大学の自動運転車であるアルテミスのような自動運転車のための、最近設計された交通信号認識システムについて説明する。
複数のカメラにまたがってボックスレグレッションとトラフィック光の分類を行うためのYOLOv5検出器をデプロイし、観測結果を融合する。
実世界のシナリオにおいて,単一フレーム,単一カメラオブジェクト検出と比較して,より優れた性能を示す。
- 参考スコア(独自算出の注目度): 4.506770920842088
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Following four successful years in the SAE AutoDrive Challenge Series I, the
University of Toronto is participating in the Series II competition to develop
a Level 4 autonomous passenger vehicle capable of handling various urban
driving scenarios by 2025. Accurate detection of traffic lights and correct
identification of their states is essential for safe autonomous operation in
cities. Herein, we describe our recently-redesigned traffic light perception
system for autonomous vehicles like the University of Toronto's self-driving
car, Artemis. Similar to most traffic light perception systems, we rely
primarily on camera-based object detectors. We deploy the YOLOv5 detector for
bounding box regression and traffic light classification across multiple
cameras and fuse the observations. To improve robustness, we incorporate priors
from high-definition semantic maps and perform state filtering using hidden
Markov models. We demonstrate a multi-camera, real time-capable traffic light
perception pipeline that handles complex situations including multiple visible
intersections, traffic light variations, temporary occlusion, and flashing
light states. To validate our system, we collected and annotated a varied
dataset incorporating flashing states and a range of occlusion types. Our
results show superior performance in challenging real-world scenarios compared
to single-frame, single-camera object detection.
- Abstract(参考訳): SAEオートドライブチャレンジシリーズIでの4年間の成功に続いて、トロント大学は2025年までに様々な都市交通シナリオを扱えるレベル4の自動運転旅客車を開発するシリーズIIコンペティションに参加している。
交通信号の正確な検出とその状態の正確な識別は、都市における安全な自律運転に不可欠である。
ここでは、トロント大学の自動運転車であるartemisのような自動運転車のための、最近再設計された交通光認識システムについて述べる。
ほとんどの交通光センシングシステムと同様に、私たちは主にカメラベースの物体検出器に依存しています。
複数のカメラにまたがってボックスレグレッションとトラフィック光の分類を行うためのYOLOv5検出器をデプロイし、観測結果を融合する。
頑健性を改善するため,高精細なセマンティックマップから先行情報を取り込み,隠れマルコフモデルを用いて状態フィルタリングを行う。
複数の可視交差点、交通光の変動、一時的な閉塞、点滅光状態を含む複雑な状況を処理するマルチカメラでリアルタイムな交通光認識パイプラインを実証する。
本システムを検証するために, 点滅状態と様々な閉塞型を含む様々なデータセットを収集, 注釈付けした。
実世界のシナリオにおいて,単一フレーム,単一カメラオブジェクト検出と比較して,より優れた性能を示す。
関連論文リスト
- City-Scale Multi-Camera Vehicle Tracking System with Improved Self-Supervised Camera Link Model [0.0]
本稿では,自己監督型カメラリンクモデルを用いた,革新的なマルチカメラ車両追跡システムを提案する。
提案手法は,61.07%のIDF1スコアを有するCityFlow V2ベンチマークにおいて,自動カメラリンク方式の最先端性を実現する。
論文 参考訳(メタデータ) (2024-05-18T17:28:35Z) - A Real-Time Wrong-Way Vehicle Detection Based on YOLO and Centroid
Tracking [0.0]
誤運転は、世界中の道路事故や交通渋滞の主な原因の1つである。
本稿では,道路監視カメラによる車両自動検知システムを提案する。
論文 参考訳(メタデータ) (2022-10-19T00:53:28Z) - Scalable and Real-time Multi-Camera Vehicle Detection,
Re-Identification, and Tracking [58.95210121654722]
理想化されたビデオストリームやキュレートされたビデオストリームの代わりに,リアルタイムで低解像度のCCTVを処理する,リアルタイムな都市規模のマルチカメラ車両追跡システムを提案する。
私たちの手法は、公共のリーダーボードで上位5人のパフォーマーにランク付けされています。
論文 参考訳(メタデータ) (2022-04-15T12:47:01Z) - SurroundDepth: Entangling Surrounding Views for Self-Supervised
Multi-Camera Depth Estimation [101.55622133406446]
本研究では,複数の周囲からの情報を組み込んだSurroundDepth法を提案し,カメラ間の深度マップの予測を行う。
具体的には、周囲のすべてのビューを処理し、複数のビューから情報を効果的に融合するクロスビュー変換器を提案する。
実験において,本手法は,挑戦的なマルチカメラ深度推定データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-04-07T17:58:47Z) - Traffic-Net: 3D Traffic Monitoring Using a Single Camera [1.1602089225841632]
我々は,1台のCCTVトラヒックカメラを用いたリアルタイムトラヒック監視のための実用的なプラットフォームを提供する。
車両・歩行者検出のためのカスタムYOLOv5ディープニューラルネットワークモデルとSORT追跡アルゴリズムの改良を行った。
また、短時間・長期の時間的ビデオデータストリームに基づく階層的なトラフィックモデリングソリューションも開発している。
論文 参考訳(メタデータ) (2021-09-19T16:59:01Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
交差点をナビゲートすることは、自動運転車にとって大きな課題の1つです。
本研究では,交通標識のみが提供された交差点をナビゲート可能なシステムの実装に着目する。
本研究では,時間ステップ毎に加速度と操舵角を予測するためのニューラルネットワークの訓練に用いる,モデルフリーの連続学習アルゴリズムを用いたマルチエージェントシステムを提案する。
論文 参考訳(メタデータ) (2021-04-28T07:54:40Z) - Multi-Modal Fusion Transformer for End-to-End Autonomous Driving [59.60483620730437]
画像表現とLiDAR表現を注目で統合する,新しいマルチモードフュージョントランスフォーマであるTransFuserを提案する。
本手法は, 衝突を76%低減しつつ, 最先端駆動性能を実現する。
論文 参考訳(メタデータ) (2021-04-19T11:48:13Z) - DSEC: A Stereo Event Camera Dataset for Driving Scenarios [55.79329250951028]
本研究は,イベントカメラを用いた初の高分解能大規模ステレオデータセットを提案する。
データセットは、様々な照明条件で駆動により収集された53のシーケンスを含む。
イベントベースステレオアルゴリズムの開発と評価のための基礎的な真相の相違を提供する。
論文 参考訳(メタデータ) (2021-03-10T12:10:33Z) - Towards Autonomous Driving: a Multi-Modal 360$^{\circ}$ Perception
Proposal [87.11988786121447]
本稿では,自動運転車の3次元物体検出と追跡のためのフレームワークを提案する。
このソリューションは、新しいセンサ融合構成に基づいて、正確で信頼性の高い道路環境検出を提供する。
自動運転車に搭載されたシステムの様々なテストは、提案された知覚スタックの適合性を評価することに成功している。
論文 参考訳(メタデータ) (2020-08-21T20:36:21Z) - DAWN: Vehicle Detection in Adverse Weather Nature Dataset [4.09920839425892]
本研究では,DAWNと呼ばれる各種気象条件下で収集した実世界の画像からなる新しいデータセットを提案する。
このデータセットは、実際の交通環境から1000枚の画像を集め、霧、雪、雨、砂嵐の4つの天候条件に分けられる。
このデータは,車両検知システムの性能に及ぼす悪天候の影響の解明に有効である。
論文 参考訳(メタデータ) (2020-08-12T15:48:49Z) - Improved YOLOv3 Object Classification in Intelligent Transportation
System [29.002873450422083]
高速道路における車両・運転者・人の検出・分類を実現するために, YOLOv3に基づくアルゴリズムを提案する。
モデルは優れた性能を持ち、道路遮断、異なる姿勢、極端な照明に頑丈である。
論文 参考訳(メタデータ) (2020-04-08T11:45:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。