論文の概要: Online machine-learning forecast uncertainty estimation for sequential
data assimilation
- arxiv url: http://arxiv.org/abs/2305.08874v1
- Date: Fri, 12 May 2023 19:23:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-17 17:50:31.912322
- Title: Online machine-learning forecast uncertainty estimation for sequential
data assimilation
- Title(参考訳): 逐次データ同化のためのオンライン機械学習予測不確実性推定
- Authors: Maximiliano A. Sacco, Manuel Pulido, Juan J. Ruiz and Pierre Tandeo
- Abstract要約: 予測の不確実性の定量化は、最先端の数値予測とデータ同化システムの重要な側面である。
本研究では、状態依存予測の不確実性を推定する畳み込みニューラルネットワークに基づく機械学習手法を提案する。
ハイブリッドデータ同化法は,アンサンブルが比較的小さい場合に,アンサンブルカルマンフィルタと同等の性能を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Quantifying forecast uncertainty is a key aspect of state-of-the-art
numerical weather prediction and data assimilation systems. Ensemble-based data
assimilation systems incorporate state-dependent uncertainty quantification
based on multiple model integrations. However, this approach is demanding in
terms of computations and development. In this work a machine learning method
is presented based on convolutional neural networks that estimates the
state-dependent forecast uncertainty represented by the forecast error
covariance matrix using a single dynamical model integration. This is achieved
by the use of a loss function that takes into account the fact that the
forecast errors are heterodastic. The performance of this approach is examined
within a hybrid data assimilation method that combines a Kalman-like analysis
update and the machine learning based estimation of a state-dependent forecast
error covariance matrix. Observing system simulation experiments are conducted
using the Lorenz'96 model as a proof-of-concept. The promising results show
that the machine learning method is able to predict precise values of the
forecast covariance matrix in relatively high-dimensional states. Moreover, the
hybrid data assimilation method shows similar performance to the ensemble
Kalman filter outperforming it when the ensembles are relatively small.
- Abstract(参考訳): 予測の不確かさの定量化は、最先端の数値気象予測とデータ同化システムの重要な側面である。
アンサンブルベースのデータ同化システムは、複数のモデル統合に基づく状態依存の不確実性定量化を含む。
しかし、このアプローチは計算と開発の観点から要求されている。
本研究では,単一力学モデル積分を用いて予測誤差共分散行列で表される状態依存予測の不確かさを推定する畳み込みニューラルネットワークに基づく機械学習手法を提案する。
これは、予測エラーがヘテロダストであることを考慮に入れた損失関数を使用することで達成される。
提案手法の性能は,カルマン型解析更新と状態依存予測誤差共分散行列の機械学習に基づく推定を組み合わせたハイブリッドデータ同化法で検証される。
lorenz'96モデルを概念実証として観測システムシミュレーション実験を行った。
有望な結果は, 比較的高次元状態において, 予測共分散行列の正確な値を予測できることを示す。
さらに、ハイブリッドデータ同化法は、アンサンブルが比較的小さい場合には、アンサンブルカルマンフィルタと同等の性能を示す。
関連論文リスト
- Online Variational Sequential Monte Carlo [49.97673761305336]
我々は,計算効率が高く正確なモデルパラメータ推定とベイジアン潜在状態推定を提供する変分連続モンテカルロ法(VSMC)を構築した。
オンラインVSMCは、パラメータ推定と粒子提案適応の両方を効率よく、完全にオンザフライで実行することができる。
論文 参考訳(メタデータ) (2023-12-19T21:45:38Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
多重モード回帰は非定常過程の予測や分布の複雑な混合において重要である。
構造的放射基底関数ネットワークは回帰問題に対する複数の仮説予測器のアンサンブルとして提示される。
この構造モデルにより, このテッセルレーションを効率よく補間し, 複数の仮説対象分布を近似することが可能であることが証明された。
論文 参考訳(メタデータ) (2023-09-02T01:27:53Z) - Scalable Dynamic Mixture Model with Full Covariance for Probabilistic
Traffic Forecasting [16.04029885574568]
時間変化誤差過程に対するゼロ平均ガウス分布の動的混合を提案する。
提案手法は,学習すべきパラメータを数つ追加するだけで,既存のディープラーニングフレームワークにシームレスに統合することができる。
提案手法を交通速度予測タスク上で評価し,提案手法がモデル水平線を改良するだけでなく,解釈可能な時間相関構造も提供することを発見した。
論文 参考訳(メタデータ) (2022-12-10T22:50:00Z) - Bayesian Sparse Regression for Mixed Multi-Responses with Application to
Runtime Metrics Prediction in Fog Manufacturing [6.288767115532775]
フォッグ製造は、分散計算Fogユニットを通じて従来の製造システムを大幅に強化することができる。
予測オフロード手法は,実行時のパフォーマンス指標の正確な予測と不確かさの定量化に大きく依存していることが知られている。
本稿では,多変量混合応答に対するベイジアンスパース回帰法を提案し,実行時性能指標の予測を強化する。
論文 参考訳(メタデータ) (2022-10-10T16:14:08Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
時間変化量の推定は、医療や金融などの分野における意思決定の基本的な構成要素である。
本稿では,アテンションベースデコーダを用いて関節分布を推定する多元的手法を提案する。
本研究では,本モデルが実世界の複数のデータセットに対して最先端の予測を生成することを示す。
論文 参考訳(メタデータ) (2022-02-07T21:37:29Z) - Observation Error Covariance Specification in Dynamical Systems for Data
assimilation using Recurrent Neural Networks [0.5330240017302621]
長期記憶(LSTM)リカレントニューラルネットワーク(RNN)に基づくデータ駆動型アプローチを提案する。
提案手法では,事前の誤差分布に関する知識や仮定は不要である。
提案手法を,DI01とD05という2つの最先端共分散チューニングアルゴリズムと比較した。
論文 参考訳(メタデータ) (2021-11-11T20:23:00Z) - CovarianceNet: Conditional Generative Model for Correct Covariance
Prediction in Human Motion Prediction [71.31516599226606]
本稿では,将来の軌道の予測分布に関連する不確かさを正確に予測する手法を提案する。
我々のアプローチであるCovariaceNetは、ガウス潜在変数を持つ条件付き生成モデルに基づいている。
論文 参考訳(メタデータ) (2021-09-07T09:38:24Z) - Test-time Collective Prediction [73.74982509510961]
マシンラーニングの複数のパーティは、将来のテストポイントを共同で予測したいと考えています。
エージェントは、すべてのエージェントの集合の集合的な専門知識の恩恵を受けることを望んでいるが、データやモデルパラメータを解放する意思はないかもしれない。
我々は、各エージェントの事前学習モデルを利用して、テスト時に集合的な予測を行う分散型メカニズムを探索する。
論文 参考訳(メタデータ) (2021-06-22T18:29:58Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Supervised learning from noisy observations: Combining machine-learning
techniques with data assimilation [0.6091702876917281]
本稿では,予測モデルと固有不確かさを,入射雑音観測と最適に組み合わせる方法について述べる。
得られた予測モデルは、訓練後、計算的に安価であると同時に、極めて優れた予測能力を有することを示す。
本手法は,予測タスクを超えて,確率的予測のための信頼性の高いアンサンブルを生成するとともに,マルチスケールシステムにおける効果的なモデルクロージャを学習するためにも有効であることを示す。
論文 参考訳(メタデータ) (2020-07-14T22:29:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。