論文の概要: Learning to Learn Unlearned Feature for Brain Tumor Segmentation
- arxiv url: http://arxiv.org/abs/2305.08878v1
- Date: Sat, 13 May 2023 05:26:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-17 17:51:15.856375
- Title: Learning to Learn Unlearned Feature for Brain Tumor Segmentation
- Title(参考訳): 脳腫瘍のセグメンテーションにおける未学習特徴の学習
- Authors: Seungyub Han, Yeongmo Kim, Seokhyeon Ha, Jungwoo Lee, Seunghong Choi
- Abstract要約: そこで本研究では,脳腫瘍の分類を微調整するアルゴリズムを提案し,少数のデータサンプルを必要とせず,ネットワークが元のタスクを忘れないようにする。
本稿では, 高次グリオーマから脳転移への転移学習手法を示し, 提案アルゴリズムがグリオーマと脳転移ドメインのバランスのとれたパラメータを数ステップで達成できることを実証する。
- 参考スコア(独自算出の注目度): 13.402170359958752
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a fine-tuning algorithm for brain tumor segmentation that needs
only a few data samples and helps networks not to forget the original tasks.
Our approach is based on active learning and meta-learning. One of the
difficulties in medical image segmentation is the lack of datasets with proper
annotations, because it requires doctors to tag reliable annotation and there
are many variants of a disease, such as glioma and brain metastasis, which are
the different types of brain tumor and have different structural features in MR
images. Therefore, it is impossible to produce the large-scale medical image
datasets for all types of diseases. In this paper, we show a transfer learning
method from high grade glioma to brain metastasis, and demonstrate that the
proposed algorithm achieves balanced parameters for both glioma and brain
metastasis domains within a few steps.
- Abstract(参考訳): そこで本研究では,脳腫瘍の分類を微調整するアルゴリズムを提案し,少数のデータサンプルを必要とせず,ネットワークが元のタスクを忘れないようにする。
我々のアプローチはアクティブラーニングとメタラーニングに基づいている。
医学的画像分割の難しさの1つは、適切なアノテーションによるデータセットの欠如であり、医師が信頼できるアノテーションをタグ付けする必要があることと、脳腫瘍の種類が異なり、mr画像に異なる構造的特徴を持つグリオーマや脳転移など、疾患の多くの変種が存在するためである。
したがって、あらゆる種類の疾患に対して大規模な医療画像データセットを作成することは不可能である。
本稿では,高次グリオーマから脳転移への伝達学習法を示し,そのアルゴリズムが数ステップでグリオーマと脳転移ドメインのバランスの取れたパラメータを実現することを示す。
関連論文リスト
- Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation [53.70131202548981]
本稿では,脳MRIにKGPL(Knowledge-Guided Prompt Learning)を用いた2段階のセグメンテーションフレームワークを提案する。
具体的には,大規模データセットと準最適ラベルを用いたトレーニング前セグメンテーションモデルについて述べる。
知識的プロンプトの導入は、解剖学的多様性と生物学的プロセスの間の意味的関係を捉えている。
論文 参考訳(メタデータ) (2024-07-31T04:32:43Z) - Brain Tumor Classification From MRI Images Using Machine Learning [0.24739484546803336]
脳腫瘍は生命を脅かす問題であり、人間の身体の正常な機能を損なう。
医用画像におけるディープラーニングアルゴリズムの使用により、脳腫瘍の分類と診断が大幅に改善された。
本研究の目的は,機械学習を用いた脳腫瘍検出のための予測システムを開発することである。
論文 参考訳(メタデータ) (2024-07-15T11:30:40Z) - Brain Tumor Segmentation from MRI Images using Deep Learning Techniques [3.1498833540989413]
パブリックMRIデータセットは、脳腫瘍、髄膜腫、グリオーマ、下垂体腫瘍の3つの変種を持つ233人の患者の3064 TI強調画像を含む。
データセットファイルは、よく知られた画像セグメンテーション深層学習モデルの実装とトレーニングを利用する方法論に順応する前に、変換され、前処理される。
実験の結果,Adamを用いた再帰的残差U-Netは平均差0.8665に到達し,他の最先端ディープラーニングモデルよりも優れていた。
論文 参考訳(メタデータ) (2023-04-29T13:33:21Z) - Prediction of brain tumor recurrence location based on multi-modal
fusion and nonlinear correlation learning [55.789874096142285]
深層学習に基づく脳腫瘍再発位置予測ネットワークを提案する。
まず、パブリックデータセットBraTS 2021上で、マルチモーダル脳腫瘍セグメンテーションネットワークをトレーニングする。
次に、事前訓練されたエンコーダを、リッチなセマンティックな特徴を抽出するために、プライベートデータセットに転送する。
2つのデコーダは、現在の脳腫瘍を共同に分断し、将来の腫瘍再発位置を予測するために構築されている。
論文 参考訳(メタデータ) (2023-04-11T02:45:38Z) - Unsupervised Brain Tumor Segmentation with Image-based Prompts [12.525656002678856]
我々は,脳腫瘍の診断を可能にする画像ベースのプロンプトを設計し,教師なし脳腫瘍セグメンテーションへのアプローチを提案する。
大量の注釈付きデータで脳腫瘍セグメンテーションのモデルを直接訓練する代わりに、私たちは質問に答えられるモデルをトレーニングしようとしています。
手作りのデザインは、あらゆる種類の実際の腫瘍を表現するには単純すぎるため、訓練されたモデルは、実際には異常の問題に答えるのではなく、単純化された手作りのタスクに過度に適合する可能性がある。
論文 参考訳(メタデータ) (2023-04-04T02:28:25Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
本稿では,正常脳解剖のパッチベース推定法として拡散モデルの生成タスクを再構築する手法を提案する。
腫瘍と多発性硬化症について検討し,既存のベースラインと比較して25.1%の改善がみられた。
論文 参考訳(メタデータ) (2023-03-07T09:40:22Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
本稿では, マルチモーダルMRIデータから脳腫瘍を抽出するクロスモーダルディープ・フィーチャーラーニング・フレームワークを提案する。
中心となる考え方は、不十分なデータスケールを補うために、マルチモダリティデータにまたがる豊富なパターンをマイニングすることだ。
on the BraTS benchmarks, this proposed cross-modality deep feature learning framework could effective improve the brain tumor segmentation performance。
論文 参考訳(メタデータ) (2022-01-07T07:46:01Z) - Triplet Contrastive Learning for Brain Tumor Classification [99.07846518148494]
本稿では,脳腫瘍の深層埋め込みを直接学習する手法を提案する。
本手法は,27種類の腫瘍群からなる広範囲な脳腫瘍データセットを用いて評価し,そのうち13種は稀である。
論文 参考訳(メタデータ) (2021-08-08T11:26:34Z) - Brain Tumor Classification Using Medial Residual Encoder Layers [9.038707616951795]
がんは世界で2番目に多い死因であり、2018年だけで950万人以上が死亡している。
脳腫瘍は4件のがん死亡のうち1件を数えている。
本稿では,エンコーダブロックを含むディープラーニングに基づくシステムを提案する。
3064 MR画像からなるデータセット上でのこのモデルの実験的評価は、95.98%の精度を示しており、このデータベースに関する以前の研究より優れている。
論文 参考訳(メタデータ) (2020-11-01T21:19:38Z) - Multi-Site Infant Brain Segmentation Algorithms: The iSeg-2019 Challenge [53.48285637256203]
iSeg 2019 Challengeは、さまざまなプロトコル/スキャナーを持つ複数のサイトから6ヶ月の乳児のセットを提供する。
執筆時点では、iSeg 2019には30の自動セグメンテーションメソッドが参加している。
私たちは、パイプライン/実装の詳細を説明し、実験結果を示し、脳全体、関心領域、ジャラルランドマークカーブの観点からパフォーマンスを評価することで、上位8チームについてレビューします。
論文 参考訳(メタデータ) (2020-07-04T13:39:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。