論文の概要: Learning Linear Embeddings for Non-Linear Network Dynamics with Koopman
Message Passing
- arxiv url: http://arxiv.org/abs/2305.09060v1
- Date: Mon, 15 May 2023 23:00:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-17 16:51:11.926834
- Title: Learning Linear Embeddings for Non-Linear Network Dynamics with Koopman
Message Passing
- Title(参考訳): Koopman Message Passing を用いた非線形ネットワークダイナミクスのための線形埋め込み学習
- Authors: King Fai Yeh, Paris Flood, William Redman, and Pietro Li\`o
- Abstract要約: 我々は、クープマン作用素理論とメッセージパッシングネットワークに基づく新しいアプローチを提案する。
動的システムに対する線形表現は,任意の段階において世界規模で有効である。
本手法で得られた線形化は,現在の最先端技術よりも数桁優れたネットワーク力学問題に対して予測を行う。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, Koopman operator theory has become a powerful tool for developing
linear representations of non-linear dynamical systems. However, existing
data-driven applications of Koopman operator theory, including both traditional
and deep learning approaches, perform poorly on non-linear network dynamics
problems as they do not address the underlying geometric structure. In this
paper we present a novel approach based on Koopman operator theory and message
passing networks that finds a linear representation for the dynamical system
which is globally valid at any time step. The linearisations found by our
method produce predictions on a suite of network dynamics problems that are
several orders of magnitude better than current state-of-the-art techniques. We
also apply our approach to the highly non-linear training dynamics of neural
network architectures, and obtain linear representations which can generate
network parameters with comparable performance to networks trained by classical
optimisers.
- Abstract(参考訳): 近年、クープマン作用素理論は非線形力学系の線形表現を開発するための強力なツールとなっている。
しかし、従来の学習法とディープラーニング法の両方を含むクープマン作用素理論の既存のデータ駆動的応用は、基礎となる幾何学的構造に対処しないため、非線形ネットワーク力学の問題では不十分である。
本稿では,任意の時間ステップでグローバルに有効な動的システムに対する線形表現を求める,クープマン演算子理論とメッセージパッシングネットワークに基づく新しいアプローチを提案する。
本手法で得られた線形化は,現在の最先端技術よりも数桁優れたネットワーク力学問題に対して予測を行う。
また、ニューラルネットワークアーキテクチャの非線形トレーニングダイナミクスにもアプローチを適用し、古典的なオプティマイザによってトレーニングされたネットワークに匹敵する性能でネットワークパラメータを生成する線形表現を得る。
関連論文リスト
- Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - Identifying Equivalent Training Dynamics [3.793387630509845]
共役および非共役のトレーニングダイナミクスを識別するフレームワークを開発する。
クープマン作用素理論の進歩を利用して、クープマン固有値を比較することで、オンラインミラー降下とオンライン勾配降下の既知同値を正しく同定できることを実証する。
a)浅層ニューラルネットワークと広層ニューラルネットワークの間の非共役トレーニングダイナミクスの同定、(b)畳み込みニューラルネットワークにおけるトレーニングダイナミクスの初期段階の特徴付け、(c)グルーキングを行わないトランスフォーマーにおける非共役トレーニングダイナミクスの発見。
論文 参考訳(メタデータ) (2023-02-17T22:15:20Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
現代の力学系はますます非線形で複雑なものになりつつある。
予測と制御のためのコンパクトで包括的な表現でこれらのシステムをモデル化するフレームワークが必要である。
本手法は,教師付き学習手法を用いてこれらの基礎関数を学習する。
論文 参考訳(メタデータ) (2021-09-06T04:39:06Z) - A purely data-driven framework for prediction, optimization, and control
of networked processes: application to networked SIS epidemic model [0.8287206589886881]
我々は,大規模ネットワーク上での非線形力学の同定と制御を行う演算子理論に基づくデータ駆動型フレームワークを開発した。
提案手法では、ネットワーク構造に関する事前の知識は必要とせず、状態の2段階のスナップショットのみを用いて基礎となるダイナミクスを識別する。
論文 参考訳(メタデータ) (2021-08-01T03:57:10Z) - What can linearized neural networks actually say about generalization? [67.83999394554621]
ある無限大のニューラルネットワークにおいて、ニューラル・タンジェント・カーネル(NTK)理論は一般化を完全に特徴づける。
線形近似は、ニューラルネットワークの特定のタスクの学習複雑性を確実にランク付けできることを示す。
我々の研究は、将来の理論的研究を刺激する新しい深層学習現象の具体例を提供する。
論文 参考訳(メタデータ) (2021-06-12T13:05:11Z) - Modern Koopman Theory for Dynamical Systems [2.5889588665122725]
現代のクープマン作用素論を概観し、最近の理論とアルゴリズムの発展について述べる。
また、急速に成長する機械学習分野における重要な進歩と課題についても論じる。
論文 参考訳(メタデータ) (2021-02-24T06:18:16Z) - An Ode to an ODE [78.97367880223254]
我々は、O(d) 群上の行列フローに応じて主フローの時間依存パラメータが進化する ODEtoODE と呼ばれるニューラルODE アルゴリズムの新しいパラダイムを提案する。
この2つの流れのネストされたシステムは、訓練の安定性と有効性を提供し、勾配の消滅・爆発問題を確実に解決する。
論文 参考訳(メタデータ) (2020-06-19T22:05:19Z) - Optimizing Neural Networks via Koopman Operator Theory [6.09170287691728]
クープマン作用素理論は近年、ニューラルネットワーク理論と密接に関連していることが示されている。
この作業では、この接続を利用するための第一歩を踏み出します。
クープマン作用素理論法は、非自明な訓練時間の範囲で、供給重みの重みと偏りの予測を可能にする。
論文 参考訳(メタデータ) (2020-06-03T16:23:07Z) - Dynamic Hierarchical Mimicking Towards Consistent Optimization
Objectives [73.15276998621582]
一般化能力を高めたCNN訓練を推進するための汎用的特徴学習機構を提案する。
DSNに部分的にインスパイアされた私たちは、ニューラルネットワークの中間層から微妙に設計されたサイドブランチをフォークしました。
カテゴリ認識タスクとインスタンス認識タスクの両方の実験により,提案手法の大幅な改善が示された。
論文 参考訳(メタデータ) (2020-03-24T09:56:13Z) - Input-to-State Representation in linear reservoirs dynamics [15.491286626948881]
貯留層コンピューティングは、リカレントニューラルネットワークを設計するための一般的なアプローチである。
これらのネットワークの動作原理は、完全には理解されていない。
このようなネットワークの力学の新たな解析法を提案する。
論文 参考訳(メタデータ) (2020-03-24T00:14:25Z) - Forecasting Sequential Data using Consistent Koopman Autoencoders [52.209416711500005]
クープマン理論に関連する新しい物理学に基づく手法が導入された。
本稿では,既存の作業の多くと異なり,前方・後方のダイナミクスを生かした新しいコンシスタント・クープマン・オートエンコーダモデルを提案する。
このアプローチの鍵となるのは、一貫性のある力学と関連するクープマン作用素との相互作用を探索する新しい解析である。
論文 参考訳(メタデータ) (2020-03-04T18:24:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。