論文の概要: Making the cut: two methods for breaking down a quantum algorithm
- arxiv url: http://arxiv.org/abs/2305.10485v1
- Date: Wed, 17 May 2023 18:00:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-19 18:26:36.056366
- Title: Making the cut: two methods for breaking down a quantum algorithm
- Title(参考訳): 量子アルゴリズムを分解する2つの方法
- Authors: Miguel Mur\c{c}a, Duarte Magano, Yasser Omar
- Abstract要約: 現在、ノイズの多い小規模量子ハードウェアの時代において、計算上の優位性に達する可能性のある量子アルゴリズムを見つけることは、依然として大きな課題である。
我々は、量子アルゴリズムを低い(クエリ)深さのラウンドに分解する2つの方法を特定し、特徴付ける。
最初の問題では並列化が最高のパフォーマンスを提供するのに対し、2番目はより良い選択であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the promise that fault-tolerant quantum computers can efficiently
solve classically intractable problems, it remains a major challenge to find
quantum algorithms that may reach computational advantage in the present era of
noisy, small-scale quantum hardware. Thus, there is substantial ongoing effort
to create new quantum algorithms (or adapt existing ones) to accommodate depth
and space restrictions. By adopting a hybrid query perspective, we identify and
characterize two methods of ``breaking down'' quantum algorithms into rounds of
lower (query) depth, designating these approaches as ``parallelization'' and
``interpolation''. To the best of our knowledge, these had not been explicitly
identified and compared side-by-side, although one can find instances of them
in the literature. We apply them to two problems with known quantum speedup:
calculating the $k$-threshold function and computing a NAND tree. We show that
for the first problem parallelization offers the best performance, while for
the second interpolation is the better choice. This illustrates that no
approach is strictly better than the other, and so that there is more than one
good way to break down a quantum algorithm into a hybrid quantum-classical
algorithm.
- Abstract(参考訳): フォールトトレラント量子コンピュータが古典的に難解な問題を効率的に解くという約束にもかかわらず、今日のノイズの多い小規模量子ハードウェアの時代において、計算の優位に達する量子アルゴリズムを見つけることは依然として大きな課題である。
したがって、深さと空間制限に対応するために、新しい量子アルゴリズム(または既存のアルゴリズムを適応させる)を作成する作業が進行中である。
ハイブリッド・クエリ・パースペクティブを採用することで、``crunch down'' 量子アルゴリズムの2つの方法を低い(クエリ)深さのラウンドに識別し、これらのアプローチを ``parallelization'' と ``interpolation'' と指定する。
私たちの知る限りでは、これらを明示的に識別して比較することはできませんでしたが、文献にはその例があります。
これらを既知の量子スピードアップの2つの問題に適用する:$k$-threshold関数の計算とNANDツリーの計算である。
第1の問題は、並列化が最高のパフォーマンスを提供し、第2の補間はより良い選択であることを示す。
したがって、量子アルゴリズムをハイブリッドな量子古典的アルゴリズムに分解する方法が一つ以上存在する。
関連論文リスト
- Discretized Quantum Exhaustive Search for Variational Quantum Algorithms [0.0]
現在利用可能な量子デバイスは、限られた量子ビットと高いレベルのノイズしか持たず、それらのデバイスで正確に解決できる問題のサイズを制限している。
我々は、変分量子アルゴリズム -- 離散化量子排他探索 -- を改善する新しい方法を提案する。
論文 参考訳(メタデータ) (2024-07-24T22:06:05Z) - A quantum annealing approach to the minimum distance problem of quantum codes [0.0]
本稿では,量子安定化器符号の最小距離を準拘束的二項最適化問題として再定式化することで計算する手法を提案する。
D-Wave Advantage 4.1quantum annealerと比較することにより,本手法の実用性を示す。
論文 参考訳(メタデータ) (2024-04-26T21:29:42Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
量子コンピューティングは、アルゴリズムを設計する新しい方法の基礎となる。
どの場の量子スピードアップが達成できるかという新たな課題が生じる。
量子サブルーチンの設計は、従来のサブルーチンよりも効率的で、新しい強力な量子アルゴリズムに固い柱を向ける。
論文 参考訳(メタデータ) (2024-02-26T09:32:07Z) - A Quantum Algorithm Based Heuristic to Hide Sensitive Itemsets [1.8419202109872088]
データ共有の文脈において、よく研究された問題を解決するための量子的アプローチを提案する。
本稿では, 量子アルゴリズムを用いて, この問題の解決方法を示すために, 小型データセットを用いた実験を行った。
論文 参考訳(メタデータ) (2024-02-12T20:44:46Z) - Quantum-Enhanced Greedy Combinatorial Optimization Solver [12.454028945013924]
最適化問題を解くために反復量子最適化アルゴリズムを導入する。
72量子ビット以下のプログラム可能な超伝導量子系に量子アルゴリズムを実装した。
量子アルゴリズムは古典的な欲求よりも体系的に優れており、量子エンハンスメントのシグナルとなる。
論文 参考訳(メタデータ) (2023-03-09T18:59:37Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
我々は3つのハイブリッド量子k-Meansアルゴリズムを設計、実装、評価する。
我々は距離の計算を高速化するために量子現象を利用する。
我々は、我々のハイブリッド量子k-平均アルゴリズムが古典的バージョンよりも効率的であることを示す。
論文 参考訳(メタデータ) (2022-12-13T16:04:16Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
量子アルゴリズムにおける最悪のケースと平均ケースの削減を設計する問題について検討する。
量子アルゴリズムの明示的で効率的な変換は、入力のごく一部でのみ正し、全ての入力で正しくなる。
論文 参考訳(メタデータ) (2022-12-06T22:01:49Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vaziraniアルゴリズムは、オラクルに符号化されたビット文字列を決定できる。
我々はベルンシュタイン・ヴァジラニアルゴリズムの量子資源を詳細に分析する。
絡み合いがない場合、初期状態における量子コヒーレンス量とアルゴリズムの性能が直接関係していることが示される。
論文 参考訳(メタデータ) (2022-05-26T20:32:36Z) - Multiple Query Optimization using a Hybrid Approach of Classical and
Quantum Computing [1.7077661158850292]
データ集約的な問題領域において重要なNPハード問題である多重クエリ最適化問題(MQO)に取り組む。
ゲート型量子コンピュータ上でMQOを解くために,新しい古典量子アルゴリズムを提案する。
提案アルゴリズムでは, クビット効率が99%に近づき, ほぼ2倍に向上した。
論文 参考訳(メタデータ) (2021-07-22T08:12:49Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
3次元形状と画像のマッチング問題は、NPハードな置換行列制約を持つ二次代入問題(QAP)としてしばしば定式化される。
本稿では,量子ハードウェア上での効率的な実行に適した制約のない問題として,いくつかのQAPの再構成を提案する。
提案アルゴリズムは、将来の量子コンピューティングアーキテクチャにおいて、より高次元にスケールする可能性がある。
論文 参考訳(メタデータ) (2021-07-08T17:59:55Z) - On Applying the Lackadaisical Quantum Walk Algorithm to Search for
Multiple Solutions on Grids [63.75363908696257]
不足量子ウォーク(英: lackadaisical quantum walk)は、頂点が重量$l$の自己ループを持つグラフ構造を探索するために開発されたアルゴリズムである。
本稿では,グリッド上の複数解の探索に不連続な量子ウォークを適用した際の問題に対処する。
論文 参考訳(メタデータ) (2021-06-11T09:43:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。