論文の概要: ALT: An Automatic System for Long Tail Scenario Modeling
- arxiv url: http://arxiv.org/abs/2305.11390v1
- Date: Fri, 19 May 2023 02:35:39 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-22 16:31:26.242211
- Title: ALT: An Automatic System for Long Tail Scenario Modeling
- Title(参考訳): ALT:ロングテールシナリオモデリングのための自動システム
- Authors: Ya-Lin Zhang, Jun Zhou, Yankun Ren, Yue Zhang, Xinxing Yang, Meng Li,
Qitao Shi, Longfei Li
- Abstract要約: この問題に対処するために,ALTという自動システムを提案する。
各種自動機械学習関連技術を活用するなど,我々のシステムで使用されるアルゴリズムを改善するために,いくつかの取り組みがなされている。
システムを構築するには、システムの観点から多くの最適化が行われ、本質的なモジュールは武装している。
- 参考スコア(独自算出の注目度): 15.76033166478158
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper, we consider the problem of long tail scenario modeling with
budget limitation, i.e., insufficient human resources for model training stage
and limited time and computing resources for model inference stage. This
problem is widely encountered in various applications, yet has received
deficient attention so far. We present an automatic system named ALT to deal
with this problem. Several efforts are taken to improve the algorithms used in
our system, such as employing various automatic machine learning related
techniques, adopting the meta learning philosophy, and proposing an essential
budget-limited neural architecture search method, etc. Moreover, to build the
system, many optimizations are performed from a systematic perspective, and
essential modules are armed, making the system more feasible and efficient. We
perform abundant experiments to validate the effectiveness of our system and
demonstrate the usefulness of the critical modules in our system. Moreover,
online results are provided, which fully verified the efficacy of our system.
- Abstract(参考訳): 本稿では,モデルトレーニング段階における人的資源不足や,モデル推論段階における時間と計算資源不足といった,予算制限を伴う長期シナリオモデリングの問題について考察する。
この問題は様々なアプリケーションで広く認識されているが、今のところは注目されていない。
この問題に対処するために,ALTという自動システムを提案する。
様々な機械学習関連手法の活用、メタ学習哲学の活用、本質的な予算制限型ニューラルネットワーク探索法の提案など、システムで使用されるアルゴリズムの改善にいくつかの取り組みがなされている。
さらに、システムを構築するには、体系的な観点から多くの最適化が行われ、本質的なモジュールは武装しており、システムをより実現可能かつ効率的にする。
我々は,システムの有効性を検証し,システムにおけるクリティカルモジュールの有用性を実証するために,豊富な実験を行った。
さらに,本システムの有効性を十分に検証したオンライン結果も提供される。
関連論文リスト
- Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - Towards Efficient Generative Large Language Model Serving: A Survey from
Algorithms to Systems [14.355768064425598]
生成型大規模言語モデル(LLM)が最前線に立ち、データとのインタラクション方法に革命をもたらします。
しかし、これらのモデルをデプロイする際の計算強度とメモリ消費は、効率性の観点から大きな課題を呈している。
本研究は,機械学習システム(MLSys)研究の観点から,効率的なLCM提供手法の必要性について考察する。
論文 参考訳(メタデータ) (2023-12-23T11:57:53Z) - Don't Treat the Symptom, Find the Cause! Efficient
Artificial-Intelligence Methods for (Interactive) Debugging [0.0]
現代の世界では、私たちは、より高度な洗練のシステムに常用し、活用し、交流し、頼りにしています。
本論では、モデルに基づく診断の話題を紹介し、この分野の課題を指摘し、これらの課題に対処する研究からのアプローチの選択について論じる。
論文 参考訳(メタデータ) (2023-06-22T12:44:49Z) - Optimal Exploration for Model-Based RL in Nonlinear Systems [14.540210895533937]
未知の非線形力学系を制御する学習は、強化学習と制御理論の基本的な問題である。
本研究では,タスク依存メトリックにおける不確実性を低減するために,効率よくシステムを探索できるアルゴリズムを開発した。
我々のアルゴリズムは、ポリシー最適化から任意のシステムにおける最適な実験設計への一般的な還元に依存しており、独立した関心を持つ可能性がある。
論文 参考訳(メタデータ) (2023-06-15T15:47:50Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
我々は,内在性雑音障害を緩和し,AIによって強化された数値解法を,データサイズを小さくする訓練について検討する。
まず,教師付き学習における雑音を制御するための自己認識機構の能力を解析し,さらに微分方程式の数値解に付加的な自己認識機構を導入し,簡便かつ有効な数値解法であるAttrを提案する。
論文 参考訳(メタデータ) (2023-02-05T01:39:21Z) - Multi Agent System for Machine Learning Under Uncertainty in Cyber
Physical Manufacturing System [78.60415450507706]
近年の予測機械学習の進歩は、製造における様々なユースケースに応用されている。
ほとんどの研究は、それに関連する不確実性に対処することなく予測精度を最大化することに焦点を当てた。
本稿では,機械学習における不確実性の原因を特定し,不確実性下での機械学習システムの成功基準を確立する。
論文 参考訳(メタデータ) (2021-07-28T10:28:05Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - Partitioned Active Learning for Heterogeneous Systems [5.331649110169476]
本稿では,pgp(partitioned gp)モデルに基づく分断アクティブラーニング戦略を提案する。
グローバル検索は、アクティブラーニングの探索の側面を加速する。
ローカル検索は、ローカルGPモデルによって誘導されるアクティブ学習基準を利用する。
論文 参考訳(メタデータ) (2021-05-14T02:05:31Z) - Applying Machine Learning in Self-Adaptive Systems: A Systematic
Literature Review [15.953995937484176]
現在、自己適応システムにおける機械学習の使用に関する体系的な概要はない。
我々は、従来のモニター・アナライズ・プラン・エクユートフィードバックループ(MAPE)に基づく自己適応システムに焦点を当てる。
研究の質問は、自己適応システムにおける機械学習の使用を動機づける問題、自己適応における学習の重要なエンジニアリング側面、オープンな課題に焦点を当てている。
論文 参考訳(メタデータ) (2021-03-06T13:45:59Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
本稿では,情報理論的MPCとエントロピー正規化RLとの新たな理論的関連性を示す。
バイアスモデルを利用したQ-ラーニングアルゴリズムを開発した。
論文 参考訳(メタデータ) (2019-12-31T00:29:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。