論文の概要: Learning System Dynamics without Forgetting
- arxiv url: http://arxiv.org/abs/2407.00717v2
- Date: Tue, 25 Feb 2025 03:14:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-26 15:19:08.887543
- Title: Learning System Dynamics without Forgetting
- Title(参考訳): 忘れることなくシステムダイナミクスを学習する
- Authors: Xikun Zhang, Dongjin Song, Yushan Jiang, Yixin Chen, Dacheng Tao,
- Abstract要約: 本研究では,CDL(Continuous Dynamics Learning)の問題,タスク構成の検証,既存手法の適用性について検討する。
本稿では、LG-ODEとサブネットワーク学習の長所をモデムスイッチングモジュールと統合したモードスイッチンググラフODE(MS-GODE)モデルを提案する。
CDLのための生体動態システムの新しいベンチマーク、Bio-CDLを構築し、異なるダイナミクスを持つ多様なシステムを特徴付ける。
- 参考スコア(独自算出の注目度): 60.08612207170659
- License:
- Abstract: Observation-based trajectory prediction for systems with unknown dynamics is essential in fields such as physics and biology. Most existing approaches are limited to learning within a single system with fixed dynamics patterns. However, many real-world applications require learning across systems with evolving dynamics patterns, a challenge that has been largely overlooked. To address this, we systematically investigate the problem of Continual Dynamics Learning (CDL), examining task configurations and evaluating the applicability of existing techniques, while identifying key challenges. In response, we propose the Mode-switching Graph ODE (MS-GODE) model, which integrates the strengths LG-ODE and sub-network learning with a mode-switching module, enabling efficient learning over varying dynamics. Moreover, we construct a novel benchmark of biological dynamic systems for CDL, Bio-CDL, featuring diverse systems with disparate dynamics and significantly enriching the research field of machine learning for dynamic systems. Our code available at https://github.com/QueuQ/MS-GODE.
- Abstract(参考訳): 物理や生物学などの分野において、未知の力学を持つ系の観測に基づく軌道予測が不可欠である。
既存のアプローチのほとんどは、固定された動的パターンを持つ単一のシステム内での学習に限られています。
しかし、多くの現実世界のアプリケーションは、進化する動的パターンを持つシステムをまたいで学習する必要がある。
そこで本研究では,CDL(Continuous Dynamics Learning)の課題を体系的に検討し,課題を特定しながらタスク構成を調査し,既存の手法の適用性を評価する。
そこで本研究では,LG-ODEとサブネットワーク学習の強みをモデムスイッチングモジュールと統合し,様々なダイナミクスを効率よく学習できるモードスイッチンググラフODE(MS-GODE)モデルを提案する。
さらに, CDLのための生体力学系であるBio-CDLのベンチマークを構築し, 多様な力学系を特徴とし, 動的系に対する機械学習の研究分野を著しく充実させた。
私たちのコードはhttps://github.com/QueuQ/MS-GODE.comで公開しています。
関連論文リスト
- Generalizing Graph ODE for Learning Complex System Dynamics across
Environments [33.63818978256567]
GG-ODEは、環境全体にわたる継続的マルチエージェントシステムのダイナミクスを学習するための機械学習フレームワークである。
我々のモデルは、グラフニューラルネットワーク(GNN)によりパラメータ化されたニューラル常微分方程式(ODE)を用いてシステムダイナミクスを学習する。
様々な物理シミュレーション実験により,我々のモデルは,特に長距離において,システム力学を正確に予測できることが示されている。
論文 参考訳(メタデータ) (2023-07-10T00:29:25Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Which priors matter? Benchmarking models for learning latent dynamics [70.88999063639146]
古典力学の先行概念を機械学習モデルに統合する手法が提案されている。
これらのモデルの現在の機能について、精査する。
連続的および時間的可逆的ダイナミクスの使用は、すべてのクラスのモデルに恩恵をもたらす。
論文 参考訳(メタデータ) (2021-11-09T23:48:21Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
現代の力学系はますます非線形で複雑なものになりつつある。
予測と制御のためのコンパクトで包括的な表現でこれらのシステムをモデル化するフレームワークが必要である。
本手法は,教師付き学習手法を用いてこれらの基礎関数を学習する。
論文 参考訳(メタデータ) (2021-09-06T04:39:06Z) - Bridging the Gap: Machine Learning to Resolve Improperly Modeled
Dynamics [4.940323406667406]
本稿では,複雑な時間的挙動を示すシステムに対して,不適切にモデル化された力学を克服するためのデータ駆動型モデリング戦略を提案する。
本稿では,システムの真の力学と,不正確あるいは不適切に記述されたシステムのモデルによって与えられる力学の相違を解決するためのディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2020-08-23T04:57:02Z) - Neural Dynamical Systems: Balancing Structure and Flexibility in
Physical Prediction [14.788494279754481]
各種グレーボックス設定における動的モデルの学習方法であるNeural Dynamical Systems (NDS)を紹介する。
NDSはニューラルネットワークを使用してシステムの自由パラメータを推定し、残余項を予測し、将来状態を予測するために時間とともに数値的に統合する。
論文 参考訳(メタデータ) (2020-06-23T00:50:48Z) - Learning Stable Deep Dynamics Models [91.90131512825504]
状態空間全体にわたって安定することが保証される力学系を学習するためのアプローチを提案する。
このような学習システムは、単純な力学系をモデル化することができ、複雑な力学を学習するために追加の深層生成モデルと組み合わせることができることを示す。
論文 参考訳(メタデータ) (2020-01-17T00:04:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。