論文の概要: Recouple Event Field via Probabilistic Bias for Event Extraction
- arxiv url: http://arxiv.org/abs/2305.11498v1
- Date: Fri, 19 May 2023 07:55:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-22 15:34:36.619282
- Title: Recouple Event Field via Probabilistic Bias for Event Extraction
- Title(参考訳): 事象抽出のための確率バイアスによるイベントフィールドの再結合
- Authors: Xingyu Bai, Taiqiang Wu, Han Guo, Zhe Zhao, Xuefeng Yang, Jiayi Li,
Weijie Liu, Qi Ju, Weigang Guo, Yujiu Yang
- Abstract要約: Event extractは、イベントのトリガと引数をイベント参照から識別し、分類することを目的としている。
既存の PLM ベースの手法は、トリガー/引数フィールドの情報を無視している。
本稿では,確率的再結合モデル拡張イベント抽出フレームワークを提案する。
- 参考スコア(独自算出の注目度): 22.601552863742523
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Event Extraction (EE), aiming to identify and classify event triggers and
arguments from event mentions, has benefited from pre-trained language models
(PLMs). However, existing PLM-based methods ignore the information of
trigger/argument fields, which is crucial for understanding event schemas. To
this end, we propose a Probabilistic reCoupling model enhanced Event extraction
framework (ProCE). Specifically, we first model the syntactic-related event
fields as probabilistic biases, to clarify the event fields from ambiguous
entanglement. Furthermore, considering multiple occurrences of the same
triggers/arguments in EE, we explore probabilistic interaction strategies among
multiple fields of the same triggers/arguments, to recouple the corresponding
clarified distributions and capture more latent information fields. Experiments
on EE datasets demonstrate the effectiveness and generalization of our proposed
approach.
- Abstract(参考訳): イベントトリガとイベント参照からの引数の識別と分類を目的としたイベント抽出(EE)は、事前訓練された言語モデル(PLM)の恩恵を受けている。
しかし、既存のPLMベースの手法は、イベントスキーマを理解するのに不可欠であるトリガー/引数フィールドの情報を無視している。
この目的のために,確率的再結合モデル拡張イベント抽出フレームワーク(ProCE)を提案する。
具体的には,構文関連イベントフィールドを確率バイアスとしてモデル化し,あいまいな絡み合いからイベントフィールドを明らかにする。
さらに、脳内の同じトリガ/引数の複数発生を考慮し、同一トリガ/引数の複数のフィールド間の確率的相互作用戦略を探索し、対応する明確化分布を再定義し、より潜時的な情報フィールドをキャプチャする。
eeデータセットに関する実験は、提案手法の有効性と一般化を示しています。
関連論文リスト
- Beyond Single-Event Extraction: Towards Efficient Document-Level Multi-Event Argument Extraction [19.51890490853855]
複数項目の引数抽出モデルDEEIAを提案する。
ドキュメント内のすべてのイベントから引数を同時に抽出することができる。
提案手法は,4つの公開データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2024-05-03T07:04:35Z) - MAVEN-Arg: Completing the Puzzle of All-in-One Event Understanding Dataset with Event Argument Annotation [104.6065882758648]
MAVEN-Argは、イベント検出、イベント引数抽出、イベント関係抽出をサポートする最初のオールインワンデータセットである。
EAEベンチマークでは、(1)162のイベントタイプと612の引数ロールをカバーする包括的なスキーマ、(2)98,591のイベントと290,613の引数を含む大規模なデータスケール、(3)EAEのすべてのタスク変種をサポートする包括的なアノテーションの3つの利点がある。
論文 参考訳(メタデータ) (2023-11-15T16:52:14Z) - Type-aware Decoding via Explicitly Aggregating Event Information for
Document-level Event Extraction [11.432496741340334]
ドキュメントレベルのイベント抽出は2つの大きな課題に直面している。
本稿では,これらの制約に対処する新規な Explicitly Aggregating(SEA) モデルを提案する。
SEAはイベント情報をイベントタイプとロール表現に集約し、特定の型認識表現に基づいてイベントレコードのデコードを可能にする。
論文 参考訳(メタデータ) (2023-10-16T15:10:42Z) - PESE: Event Structure Extraction using Pointer Network based
Encoder-Decoder Architecture [0.0]
イベント抽出(EE)は、テキストからイベントとイベント関連の議論情報を見つけ、構造化形式で表現することを目的としている。
本稿では、各イベントレコードをトリガーフレーズ、トリガータイプ、引数フレーズ、および対応するロール情報を含むユニークな形式で表現する。
提案するポインタネットワークを用いたエンコーダデコーダモデルでは,イベント参加者間のインタラクションを利用して各ステップでイベントを生成する。
論文 参考訳(メタデータ) (2022-11-22T10:36:56Z) - EA$^2$E: Improving Consistency with Event Awareness for Document-Level
Argument Extraction [52.43978926985928]
本稿では、トレーニングと推論のための拡張コンテキストを備えたイベント・アウェア・引数抽出(EA$2$E)モデルを紹介する。
WIKIEVENTSとACE2005データセットの実験結果から,EA$2$Eの有効性が示された。
論文 参考訳(メタデータ) (2022-05-30T04:33:51Z) - Event Data Association via Robust Model Fitting for Event-based Object Tracking [66.05728523166755]
本稿では,イベントアソシエーションと融合問題に明示的に対処する新しいイベントデータアソシエーション(EDA)手法を提案する。
提案するEDAは、統合データアソシエーションと情報融合を行うために、イベントデータに最も適したイベントトラジェクトリを求める。
実験結果から,高速,運動のぼやけ,高ダイナミックレンジ条件といった難易度シナリオ下でのEDAの有効性が示された。
論文 参考訳(メタデータ) (2021-10-25T13:56:00Z) - Query and Extract: Refining Event Extraction as Type-oriented Binary
Decoding [51.57864297948228]
本稿では,自然言語クエリとしてイベントタイプと引数ロールを取り入れた新しいイベント抽出フレームワークを提案する。
我々のフレームワークは、イベントタイプや引数ロールと入力テキストとのセマンティックな相関をよりよく捉えるための注意機構の恩恵を受ける。
論文 参考訳(メタデータ) (2021-10-14T15:49:40Z) - Learning Constraints and Descriptive Segmentation for Subevent Detection [74.48201657623218]
本稿では,サブイベント検出とEventSeg予測の依存関係をキャプチャする制約を学習し,強制するアプローチを提案する。
我々は制約学習にRectifier Networksを採用し、学習した制約をニューラルネットワークの損失関数の正規化項に変換する。
論文 参考訳(メタデータ) (2021-09-13T20:50:37Z) - CasEE: A Joint Learning Framework with Cascade Decoding for Overlapping
Event Extraction [9.300138832652658]
イベント抽出(EE)は、テキスト中のイベント情報を抽出することを目的とした重要な情報抽出タスクである。
この研究は現実的な事象重なり合う問題を体系的に研究し、ある単語が異なる役割を持つ複数の型や引数を持つ引き金として機能する可能性がある。
本稿では,CasEEと呼ばれるイベント抽出を重畳するカスケードデコードを用いた新しい共同学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-07-04T10:01:55Z) - Unsupervised Label-aware Event Trigger and Argument Classification [73.86358632937372]
まず,利用可能なツール(srlなど)でイベントを識別し,それを事前に定義されたイベントタイプに自動マップする,教師なしイベント抽出パイプラインを提案する。
事前訓練された言語モデルを利用して、イベントトリガと引数の両方の事前定義された型を文脈的に表現します。
我々は、トリガーの83%と引数の54%を正しい型にマッピングし、以前のゼロショットアプローチのパフォーマンスをほぼ倍にしました。
論文 参考訳(メタデータ) (2020-12-30T17:47:24Z) - Document-level Event Extraction with Efficient End-to-end Learning of
Cross-event Dependencies [37.96254956540803]
本稿では,構造化予測アルゴリズムであるDeep Value Networks (DVN) を利用したエンドツーエンドモデルを提案する。
提案手法はACE05上でのCRFモデルに匹敵する性能を達成し,計算効率は極めて高い。
論文 参考訳(メタデータ) (2020-10-24T05:28:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。