論文の概要: Generalizing to new geometries with Geometry-Aware Autoregressive Models
(GAAMs) for fast calorimeter simulation
- arxiv url: http://arxiv.org/abs/2305.11531v3
- Date: Thu, 26 Oct 2023 00:07:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-28 05:10:29.114409
- Title: Generalizing to new geometries with Geometry-Aware Autoregressive Models
(GAAMs) for fast calorimeter simulation
- Title(参考訳): 高速カロリーメータシミュレーションのための幾何学的自己回帰モデル(GAAM)による新しいジオメトリへの一般化
- Authors: Junze Liu, Aishik Ghosh, Dylan Smith, Pierre Baldi, Daniel Whiteson
- Abstract要約: 生成モデルはより高速なサンプル生産を提供することができるが、現在は特定の検出器測地の性能を最適化するためにかなりの努力が必要である。
我々は,温度計の応答が幾何によってどのように変化するかを学習する自動回帰モデルを開発した。
幾何認識モデルは、いくつかの指標で50ドル以上もするベースライン無意識モデルより優れている。
- 参考スコア(独自算出の注目度): 6.099458999905677
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generation of simulated detector response to collision products is crucial to
data analysis in particle physics, but computationally very expensive. One
subdetector, the calorimeter, dominates the computational time due to the high
granularity of its cells and complexity of the interactions. Generative models
can provide more rapid sample production, but currently require significant
effort to optimize performance for specific detector geometries, often
requiring many models to describe the varying cell sizes and arrangements,
without the ability to generalize to other geometries. We develop a
$\textit{geometry-aware}$ autoregressive model, which learns how the
calorimeter response varies with geometry, and is capable of generating
simulated responses to unseen geometries without additional training. The
geometry-aware model outperforms a baseline unaware model by over $50\%$ in
several metrics such as the Wasserstein distance between the generated and the
true distributions of key quantities which summarize the simulated response. A
single geometry-aware model could replace the hundreds of generative models
currently designed for calorimeter simulation by physicists analyzing data
collected at the Large Hadron Collider. This proof-of-concept study motivates
the design of a foundational model that will be a crucial tool for the study of
future detectors, dramatically reducing the large upfront investment usually
needed to develop generative calorimeter models.
- Abstract(参考訳): 衝突生成物に対するシミュレート検出器の応答は素粒子物理学のデータ解析に不可欠であるが、計算量は非常に高価である。
1つのサブ検出器であるカロリメータは、細胞の粒度が高く、相互作用の複雑さのために計算時間を支配している。
生成モデルは、より迅速なサンプル生産を提供することができるが、現在、特定の検出器ジオメトリのパフォーマンスを最適化するためにかなりの労力を必要としており、しばしば、他のジオメトリに一般化することなく、様々なセルサイズや配置を記述するために多くのモデルが必要となる。
我々は,温度計の応答が幾何によってどう変化するかを学習し,余分なトレーニングを伴わずに未知の測地に対するシミュレーション応答を生成できる,$\textit{geometry-aware}$ autoregressive modelを開発した。
幾何認識モデルは、生成したワッサーシュタイン距離や、シミュレーションされた応答を要約する鍵量の真の分布といったいくつかの指標において、ベースライン無意識モデルよりも50\%以上優れている。
1つの幾何学的認識モデルは、大型ハドロン衝突型加速器で収集されたデータを分析する物理学者によって、現在カロリーメーターシミュレーション用に設計された数百の生成モデルを置き換えることができる。
この概念実証研究は、将来の検出器の研究に不可欠な道具となる基礎モデルの設計を動機付け、通常生成熱量計モデルを開発するのに必要な大規模な事前投資を劇的に削減する。
関連論文リスト
- Generative Aerodynamic Design with Diffusion Probabilistic Models [0.7373617024876725]
生成モデルは、シミュレーションの大規模なデータセット上でジオメトリを一般化することにより、ジオメトリを提供する可能性を秘めている。
特に,XFOILシミュレーションで訓練した拡散確率モデルを用いて,所定の空力特性と制約を条件とした2次元翼ジオメトリーを合成する。
モデルが同一の要件と制約に対して多様な候補設計を生成可能であることを示し、最適化手順に複数の出発点を提供する設計空間を効果的に探索する。
論文 参考訳(メタデータ) (2024-09-20T08:38:36Z) - A Comprehensive Evaluation of Generative Models in Calorimeter Shower Simulation [0.0]
ファストシミュレーション」は計算ボトルネックを克服する上で重要な役割を担っている。
深部生成モデルの使用により、検出器シミュレーションのための代理モデルへの関心が高まった。
評価の結果,CaloDiffusionおよびCaloScore生成モデルが最も正確な粒子シャワーシミュレーションを行った。
論文 参考訳(メタデータ) (2024-06-08T11:17:28Z) - Deep Generative Models for Detector Signature Simulation: A Taxonomic Review [0.0]
粒子物理学検出器からの信号は衝突の物理を符号化する低レベル物体(エネルギー沈降や軌道など)である。
検出器におけるそれらの完全なシミュレーションは、計算と記憶集約的なタスクである。
我々は,検出器シグネチャのシミュレーションについて,既存の文献の包括的かつ徹底的な分類学的レビューを行う。
論文 参考訳(メタデータ) (2023-12-15T08:27:39Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Geometric Neural Diffusion Processes [55.891428654434634]
拡散モデルの枠組みを拡張して、無限次元モデリングに一連の幾何学的先行を組み込む。
これらの条件で、生成関数モデルが同じ対称性を持つことを示す。
論文 参考訳(メタデータ) (2023-07-11T16:51:38Z) - Geometry-aware Autoregressive Models for Calorimeter Shower Simulations [6.01665219244256]
本研究では, 幾何線量に基づく幾何学的自己回帰モデルを構築した。
これは、新しい目に見えないカロリーメーターに一般化できるモデルを構築するための、概念実証の重要なステップである。
このようなモデルは、大型ハドロン衝突型加速器実験において、カロリーメータシミュレーションに使用される数百の生成モデルを置き換えることができる。
論文 参考訳(メタデータ) (2022-12-16T01:45:17Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
本研究では3次元地下流体の貯留層シミュレーションを学習するためのハイブリッドグラフネットワークシミュレータ (HGNS) を提案する。
HGNSは、流体の進化をモデル化する地下グラフニューラルネットワーク(SGNN)と、圧力の進化をモデル化する3D-U-Netで構成されている。
産業標準地下フローデータセット(SPE-10)と1100万セルを用いて,HGNSが標準地下シミュレータの18倍の推算時間を短縮できることを実証した。
論文 参考訳(メタデータ) (2022-06-15T17:29:57Z) - GeoMol: Torsional Geometric Generation of Molecular 3D Conformer
Ensembles [60.12186997181117]
分子グラフからの分子の3Dコンホメーラーアンサンブルの予測は、化学情報学と薬物発見の領域において重要な役割を担っている。
既存の生成モデルは、重要な分子幾何学的要素のモデリングの欠如を含むいくつかの欠点がある。
エンド・ツー・エンド、非自己回帰、SE(3)不変の機械学習手法であるGeoMolを提案し、3Dコンバータを生成する。
論文 参考訳(メタデータ) (2021-06-08T14:17:59Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
分子グラフから分子コンフォメーション(つまり3d構造)を生成する方法を検討した。
分子グラフから有効かつ多様なコンフォーメーションを生成する新しい確率論的枠組みを提案する。
論文 参考訳(メタデータ) (2021-02-20T03:17:58Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
任意の, 平坦な, 非平坦なチャネルの正確な数値シミュレーションと, ドラッグ係数とスタントン数を予測する機械学習モデルを組み合わせる。
畳み込みニューラルネットワーク(CNN)は,数値シミュレーションのわずかな時間で,目標特性を正確に予測できることを示す。
論文 参考訳(メタデータ) (2021-01-19T16:14:02Z) - Predicting Multidimensional Data via Tensor Learning [0.0]
本研究では,本データセットの内在的多次元構造を保持するモデルを開発する。
モデルパラメータを推定するために、オルタネート・リースト・スクエアスアルゴリズムを開発した。
提案モデルは,予測文献に存在するベンチマークモデルより優れている。
論文 参考訳(メタデータ) (2020-02-11T11:57:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。