論文の概要: A Path to Holistic Privacy in Stream Processing Systems
- arxiv url: http://arxiv.org/abs/2305.11638v1
- Date: Fri, 19 May 2023 12:37:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-22 14:26:23.244648
- Title: A Path to Holistic Privacy in Stream Processing Systems
- Title(参考訳): ストリーム処理システムにおけるホロスティックプライバシへの道
- Authors: Mikhail Fomichev
- Abstract要約: 我々は,SPSとIoTの交差点から生じるプライバシー問題について,系統的に考察する。
SPSにおける全体的プライバシ保護の実現に向けた重要な研究課題を特定する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The massive streams of Internet of Things (IoT) data require a timely
analysis to retain data usefulness. Stream processing systems (SPSs) enable
this task, deriving knowledge from the IoT data in real-time. Such real-time
analytics benefits many applications but can also be used to violate user
privacy, as the IoT data collected from users or their vicinity is inherently
sensitive. In this paper, we present our systematic look into privacy issues
arising from the intersection of SPSs and IoT, identifying key research
challenges towards achieving holistic privacy protection in SPSs and proposing
the solutions.
- Abstract(参考訳): IoT(Internet of Things)データの巨大なストリームは、データの有用性を維持するために、タイムリーな分析を必要とする。
ストリーム処理システム(SPS)はこのタスクを可能にし、IoTデータからリアルタイムで知識を引き出す。
このようなリアルタイム分析は多くのアプリケーションにメリットがあるが、ユーザやその周辺で収集されたIoTデータは本質的にセンシティブであるため、ユーザのプライバシ違反にも使用できる。
本稿では,SPSとIoTの交差から生じるプライバシ問題について,SPSにおける総合的なプライバシ保護を実現するための重要な研究課題を特定し,その解決策を提案する。
関連論文リスト
- ZK-DPPS: A Zero-Knowledge Decentralised Data Sharing and Processing Middleware [3.2995127573095484]
従来のZKPを必要としないゼロ知識通信を実現するフレームワークであるZK-DPPSを提案する。
プライバシは、計算のためのFHE(Fully Homomorphic Encryption)と鍵再構成のためのSMPC(Secure Multi-Party Computations)を組み合わせることで保持される。
シミュレーションサプライチェーンシナリオによるZK-DPPSの有効性を実証した。
論文 参考訳(メタデータ) (2024-10-21T01:23:37Z) - Preserving Privacy in Large Language Models: A Survey on Current Threats and Solutions [12.451936012379319]
大規模言語モデル(LLM)は、人工知能の大幅な進歩を表し、様々な領域にまたがる応用を見つける。
トレーニングのための大規模なインターネットソースデータセットへの依存は、注目すべきプライバシー問題を引き起こす。
特定のアプリケーション固有のシナリオでは、これらのモデルをプライベートデータで微調整する必要があります。
論文 参考訳(メタデータ) (2024-08-10T05:41:19Z) - KiNETGAN: Enabling Distributed Network Intrusion Detection through Knowledge-Infused Synthetic Data Generation [0.0]
合成ネットワーク活動データ(KiNETGAN)を生成するための知識注入型ジェネレーティブ・アドバイサル・ネットワークを提案する。
弊社のアプローチは、プライバシー問題に対処しながら、分散侵入検知のレジリエンスを高める。
論文 参考訳(メタデータ) (2024-05-26T08:02:02Z) - Generative AI for Secure and Privacy-Preserving Mobile Crowdsensing [74.58071278710896]
生成AIは、学術分野と産業分野の両方から多くの注目を集めている。
セキュアでプライバシ保護のモバイルクラウドセンシング(SPPMCS)は、データ収集/取得に広く応用されている。
論文 参考訳(メタデータ) (2024-05-17T04:00:58Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - IoTScent: Enhancing Forensic Capabilities in Internet of Things Gateways [45.44831696628473]
本稿では,IoTゲートウェイとホームオートメーションプラットフォームがIoTトラフィックのキャプチャと分析を行うことを可能にする,オープンソースの法医学ツールであるIoTScentを紹介する。
IoTScentは特に、Zigbeeや6LoWPAN、Threadといった多くのIoT固有のプロトコルの基礎であるIEEE5.4ベースのトラフィックを操作するように設計されている。
この作業は、Zigbeeトラフィックからデバイス識別を実行するためのツールの使用を実証する実用的なユースケースを含む、IoTScentツールの包括的な説明を提供する。
論文 参考訳(メタデータ) (2023-10-05T09:10:05Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
プライバシー上の懸念のあるデータには、データアクセスとデータ共有を頻繁に禁止する厳格な規制が伴う。
これらの障害を克服することは、プライバシーに敏感なデータを含む多くの現実世界のアプリケーションシナリオにおいて、技術的進歩の鍵となる。
差分的プライベート(DP)データパブリッシングは、データの衛生化された形式のみを公開する、魅力的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-09-27T14:38:16Z) - Integration of Domain Expert-Centric Ontology Design into the CRISP-DM for Cyber-Physical Production Systems [45.05372822216111]
機械学習(ML)とデータマイニング(DM)の手法は、収集されたデータから複雑で隠れたパターンを抽出する上で有望であることが証明されている。
しかし、このようなデータ駆動プロジェクトは、通常、CRISPDM(Cross-Industry Standard Process for Data Mining)で実行され、データの理解と準備に要する時間の不均等さのために失敗することが多い。
このコントリビューションは、データサイエンティストがCPPSの課題に対してより迅速かつ確実に洞察を得ることができるように、統合されたアプローチを提供することを目的としている。
論文 参考訳(メタデータ) (2023-07-21T15:04:00Z) - Deep Directed Information-Based Learning for Privacy-Preserving Smart
Meter Data Release [30.409342804445306]
本稿では,時系列データとスマートメータ(SM)電力消費測定の文脈における問題点について検討する。
我々は、考慮された設定において、より意味のあるプライバシーの尺度として、指向情報(DI)を導入します。
最悪のシナリオにおけるSMs測定による実世界のデータセットに関する実証的研究は、プライバシとユーティリティの既存のトレードオフを示している。
論文 参考訳(メタデータ) (2020-11-20T13:41:11Z) - A Review of Privacy-preserving Federated Learning for the
Internet-of-Things [3.3517146652431378]
この研究は、分散データ上で機械学習を実行するためのアプローチとして、フェデレーション学習をレビューした。
ユーザ生成データのプライバシ保護と,データ転送に伴う通信コストの削減を目的としている。
フェデレート学習に適用される様々な手法の長所と短所を同定する。
論文 参考訳(メタデータ) (2020-04-24T15:27:23Z) - CryptoSPN: Privacy-preserving Sum-Product Network Inference [84.88362774693914]
総生産ネットワーク(SPN)のプライバシ保護のためのフレームワークを提案する。
CryptoSPNは、中規模のSPNに対して秒の順序で高効率で正確な推論を行う。
論文 参考訳(メタデータ) (2020-02-03T14:49:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。