論文の概要: S$^3$HQA: A Three-Stage Approach for Multi-hop Text-Table Hybrid Question Answering
- arxiv url: http://arxiv.org/abs/2305.11725v2
- Date: Tue, 25 Jun 2024 09:53:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 21:19:43.592146
- Title: S$^3$HQA: A Three-Stage Approach for Multi-hop Text-Table Hybrid Question Answering
- Title(参考訳): S$3$HQA:Multi-hop Text-Table Hybrid Question Answering
- Authors: Fangyu Lei, Xiang Li, Yifan Wei, Shizhu He, Yiming Huang, Jun Zhao, Kang Liu,
- Abstract要約: 既存のモデルは、主にいくつかの欠陥があるレトリバー・リーダー・フレームワークを採用している。
本稿では3段階のTextTableQAフレームワークS3HQAを提案する。
完全なデータセットでトレーニングすると、私たちのアプローチはすべてのベースラインメソッドを上回り、HybridQAのリーダボードにランクインします。
- 参考スコア(独自算出の注目度): 27.66777544627217
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Answering multi-hop questions over hybrid factual knowledge from the given text and table (TextTableQA) is a challenging task. Existing models mainly adopt a retriever-reader framework, which have several deficiencies, such as noisy labeling in training retriever, insufficient utilization of heterogeneous information over text and table, and deficient ability for different reasoning operations. In this paper, we propose a three-stage TextTableQA framework S3HQA, which comprises of retriever, selector, and reasoner. We use a retriever with refinement training to solve the noisy labeling problem. Then, a hybrid selector considers the linked relationships between heterogeneous data to select the most relevant factual knowledge. For the final stage, instead of adapting a reading comprehension module like in previous methods, we employ a generation-based reasoner to obtain answers. This includes two approaches: a row-wise generator and an LLM prompting generator~(first time used in this task). The experimental results demonstrate that our method achieves competitive results in the few-shot setting. When trained on the full dataset, our approach outperforms all baseline methods, ranking first on the HybridQA leaderboard.
- Abstract(参考訳): 与えられたテキストとテーブル(TextTableQA)から、ハイブリッドな事実知識に関するマルチホップ質問に答えるのは、難しい作業です。
既存のモデルは、主に、トレーニングレトリバーにおけるノイズラベリング、テキストやテーブル上の異種情報の不十分な利用、異なる推論操作のための不足機能など、いくつかの欠陥を持つレトリバー・リーダー・フレームワークを採用している。
本稿では,3段階のTextTableQAフレームワークであるS3HQAを提案する。
ノイズラベリングの問題を解決するために,改良トレーニング付きレトリバーを用いる。
そして、ハイブリッドセレクタは、異種データ間のリンク関係を考慮し、最も関連性の高い事実知識を選択する。
最終段階では、従来の方法のように読み理解モジュールを適用する代わりに、世代ベースの推論を用いて回答を得る。
これには行ワイズジェネレータとLLMプロンプトジェネレータ—(このタスクで最初に使用される)の2つのアプローチが含まれる。
実験結果から,本手法は数発のショット設定において,競合的な結果が得られることが示された。
完全なデータセットでトレーニングすると、私たちのアプローチはすべてのベースラインメソッドを上回り、HybridQAのリーダボードにランクインします。
関連論文リスト
- EfficientRAG: Efficient Retriever for Multi-Hop Question Answering [52.64500643247252]
マルチホップ質問応答のための効率的な検索器であるEfficientRAGを紹介する。
実験の結果、EfficientRAGは3つのオープンドメインのマルチホップ質問応答データセット上で既存のRAG手法を超越していることがわかった。
論文 参考訳(メタデータ) (2024-08-08T06:57:49Z) - TTQA-RS- A break-down prompting approach for Multi-hop Table-Text Question Answering with Reasoning and Summarization [3.531533402602335]
マルチホップテーブル-テキストQAは、テーブルとテキストの間に複数のホップを必要とする。
我々のモデルはテーブルテキスト情報検索に拡張された検索器を使用する。
我々の実験は、素早いアプローチの可能性を実証している。
論文 参考訳(メタデータ) (2024-06-20T20:55:38Z) - Long-Span Question-Answering: Automatic Question Generation and QA-System Ranking via Side-by-Side Evaluation [65.16137964758612]
大規模言語モデルにおける長文文の活用について検討し,本書全体の読解データを作成する。
我々の目的は、長いテキストの詳細な理解を必要とする問題を分析し、理解し、推論するLLMの能力をテストすることである。
論文 参考訳(メタデータ) (2024-05-31T20:15:10Z) - Improving Question Generation with Multi-level Content Planning [70.37285816596527]
本稿では、与えられたコンテキストと回答から質問を生成する問題に対処し、特に拡張されたコンテキストをまたいだマルチホップ推論を必要とする質問に焦点をあてる。
具体的には、キーフレーズを同時に選択して完全な回答を生成するFA-modelと、生成した全回答を付加的な入力として取り込んだQ-modelの2つのコンポーネントを含む。
論文 参考訳(メタデータ) (2023-10-20T13:57:01Z) - Phrase Retrieval for Open-Domain Conversational Question Answering with
Conversational Dependency Modeling via Contrastive Learning [54.55643652781891]
Open-Domain Conversational Question Answering (ODConvQA)は、マルチターン会話を通じて質問に答えることを目的としている。
そこで本研究では,単語列に対する句検索方式を用いて,回答を直接予測する手法を提案する。
論文 参考訳(メタデータ) (2023-06-07T09:46:38Z) - LIQUID: A Framework for List Question Answering Dataset Generation [17.86721740779611]
ラベルなしコーパスからリストQAデータセットを生成するためのフレームワークであるLIQUIDを提案する。
まず、ウィキペディアまたはPubMedからの節を要約に変換し、要約されたテキストから名前付きエンティティを候補回答として抽出する。
次に、抽出されたエンティティと元のパスを含む既成の質問生成器を用いて質問を生成する。
合成データを用いて,MultiSpanQAでは5.0点,Quorefでは1.9点,BioASQベンチマークでは2.8点の精度で,過去のベストリストQAモデルの性能を大幅に向上させた。
論文 参考訳(メタデータ) (2023-02-03T12:42:45Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
KGQA(Multi-hop Question Answering over Knowledge Graph)は、自然言語の質問で言及されているトピックエンティティから、複数のホップを持つ回答エンティティを見つけることを目的としている。
我々は、モデルアーキテクチャとパラメータ学習の両方において、検索と推論を統合することで、マルチホップKGQAタスクの新しいアプローチであるUniKGQAを提案する。
論文 参考訳(メタデータ) (2022-12-02T04:08:09Z) - Weakly Supervised Pre-Training for Multi-Hop Retriever [23.79574380039197]
本研究では,人的努力を伴わない,弱教師付きマルチホップレトリバーの事前学習手法を提案する。
提案手法は,1)複雑な質問のベクトル表現を生成するための事前学習タスク,2)厳密なエンコーダに基づく事前学習モデル構造として,質問とサブクエストのネスト構造を生成するスケーラブルなデータ生成手法を含む。
論文 参考訳(メタデータ) (2021-06-18T08:06:02Z) - FeTaQA: Free-form Table Question Answering [33.018256483762386]
FeTaQAは10Kのウィキペディアベースのテーブル、質問、自由形式の回答、テーブルセルペアをサポートする新しいデータセットである。
FeTaQAは、構造化された知識ソースから複数の不連続な事実の検索、推論、および統合後に自由形式のテキスト回答を生成する必要があるため、より困難なテーブル質問回答設定を提供する。
論文 参考訳(メタデータ) (2021-04-01T09:59:40Z) - Open Question Answering over Tables and Text [55.8412170633547]
オープンな質問応答(QA)では、質問に対する回答は、質問に対する回答を含む可能性のある文書を検索して分析することによって生成される。
ほとんどのオープンQAシステムは、構造化されていないテキストからのみ情報を取得することを検討している。
我々は,このタスクの性能を評価するために,新しい大規模データセット Open Table-and-Text Question Answering (OTT-QA) を提案する。
論文 参考訳(メタデータ) (2020-10-20T16:48:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。