論文の概要: TTQA-RS- A break-down prompting approach for Multi-hop Table-Text Question Answering with Reasoning and Summarization
- arxiv url: http://arxiv.org/abs/2406.14732v2
- Date: Mon, 30 Sep 2024 21:25:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-02 16:32:07.737006
- Title: TTQA-RS- A break-down prompting approach for Multi-hop Table-Text Question Answering with Reasoning and Summarization
- Title(参考訳): TTQA-RS-Reasoning and Summarizationを用いたマルチホップ質問応答のためのブレークダウンプロンプト手法
- Authors: Jayetri Bardhan, Bushi Xiao, Daisy Zhe Wang,
- Abstract要約: マルチホップテーブル-テキストQAは、テーブルとテキストの間に複数のホップを必要とする。
我々のモデルはテーブルテキスト情報検索に拡張された検索器を使用する。
我々の実験は、素早いアプローチの可能性を実証している。
- 参考スコア(独自算出の注目度): 3.531533402602335
- License:
- Abstract: Question answering (QA) over tables and text has gained much popularity over the years. Multi-hop table-text QA requires multiple hops between the table and text, making it a challenging QA task. Although several works have attempted to solve the table-text QA task, most involve training the models and requiring labeled data. In this paper, we have proposed a Retrieval Augmented Generation (RAG) based model - TTQA-RS: A break-down prompting approach for Multi-hop Table-Text Question Answering with Reasoning and Summarization. Our model uses an enhanced retriever for table-text information retrieval and uses augmented knowledge, including table-text summary with decomposed sub-questions with answers for a reasoning-based table-text QA. Using open-source language models, our model outperformed all existing prompting methods for table-text QA tasks on existing table-text QA datasets, such as HybridQA and OTT-QA's development set. Our experiments demonstrate the potential of prompt-based approaches using open-source LLMs. Additionally, by using LLaMA3-70B, our model achieved state-of-the-art performance for prompting-based methods on multi-hop table-text QA.
- Abstract(参考訳): 表やテキストに対する質問応答(QA)は、ここ数年で大いに人気を集めている。
マルチホップテーブルテキストQAは、テーブルとテキストの間に複数のホップを必要とするため、難しいQAタスクになります。
テーブル・テキストのQAタスクを解決しようとする作業はいくつかあるが、ほとんどはモデルのトレーニングとラベル付きデータを必要とする。
本稿では,レトリーバル拡張生成(RAG)モデルであるTTQA-RSを提案する。
提案モデルは,テーブルテキスト情報検索に拡張検索器を使用し,テーブルテキストの要約とサブクエストの分解,推論に基づくテーブルテキストQAの回答を含む拡張知識を利用する。
オープンソース言語モデルを用いて、我々のモデルは、HybridQAやOTT-QAの開発セットなど、既存のテーブルテキストQAデータセット上のテーブルテキストQAタスクに対する既存のプロンプトメソッドを全て上回りました。
実験では,オープンソース LLM を用いたプロンプトベースアプローチの可能性を示す。
さらに、LLaMA3-70Bを用いて、マルチホップテーブルテキストQA上でのプロンプトベース手法の最先端性能を実現した。
関連論文リスト
- KET-QA: A Dataset for Knowledge Enhanced Table Question Answering [63.56707527868466]
本研究では,TableQAの外部知識源として知識ベース(KB)を用いることを提案する。
すべての質問は、答えるテーブルとサブグラフの両方からの情報を統合する必要がある。
我々は,膨大な知識サブグラフから関連する情報を抽出するために,レトリバー・レゾナー構造パイプラインモデルを設計する。
論文 参考訳(メタデータ) (2024-05-13T18:26:32Z) - MFORT-QA: Multi-hop Few-shot Open Rich Table Question Answering [3.1651118728570635]
今日の急成長する業界では、専門家は大量の文書を要約し、毎日重要な情報を抽出するという課題に直面している。
この課題に対処するために、テーブル質問回答(QA)のアプローチを開発し、関連する情報を抽出した。
近年のLarge Language Models (LLMs) の進歩により,プロンプトを用いて表データから情報を取り出す新たな可能性が高まっている。
論文 参考訳(メタデータ) (2024-03-28T03:14:18Z) - RobuT: A Systematic Study of Table QA Robustness Against Human-Annotated
Adversarial Perturbations [13.900589860309488]
RobuTは既存のテーブルQAデータセット(WTQ、Wiki-Weak、SQA)の上に構築されている
以上の結果から,現状のテーブルQAモデルと大規模言語モデル(GPT-3など)の双方が,これらの対向集合に数発の学習フェールを持つことが明らかとなった。
本稿では,大規模言語モデルを用いて,学習力を高めるための逆例を生成することで,この問題に対処することを提案する。
論文 参考訳(メタデータ) (2023-06-25T19:23:21Z) - MultiTabQA: Generating Tabular Answers for Multi-Table Question
Answering [61.48881995121938]
実世界のクエリは本質的に複雑で、リレーショナルデータベースやWebページ内の複数のテーブルにまたがることが多い。
我々のモデルであるMultiTabQAは、複数のテーブル上の質問に答えるだけでなく、表形式の回答を生成するために一般化する。
論文 参考訳(メタデータ) (2023-05-22T08:25:15Z) - PACIFIC: Towards Proactive Conversational Question Answering over
Tabular and Textual Data in Finance [96.06505049126345]
我々はPACIFICという新しいデータセットを提案する。既存のCQAデータセットと比較すると、PACIFICは(i)活動性、(ii)数値推論、(iii)表とテキストのハイブリッドコンテキストの3つの重要な特徴を示す。
質問生成とCQAを組み合わせたPCQA(Proactive Conversational Question Answering)に基づいて,新しいタスクを定義する。
UniPCQAはPCQAのすべてのサブタスク上でマルチタスク学習を行い、Seeq2Seqの上位$kのサンプルをクロスバリデーションすることで、マルチタスク学習におけるエラー伝搬問題を緩和するための単純なアンサンブル戦略を取り入れている。
論文 参考訳(メタデータ) (2022-10-17T08:06:56Z) - A Survey on Table Question Answering: Recent Advances [10.874446530132087]
テーブル質問回答(Table Question Answering, 表QA)は、ユーザの質問に答えるために、テーブルから正確な回答を提供する。
既存のテーブルQAの手法を,その手法により5つのカテゴリに分類する。
本稿では,いくつかの重要な課題を特定し,今後のテーブルQAの方向性について論じる。
論文 参考訳(メタデータ) (2022-07-12T02:44:40Z) - OmniTab: Pretraining with Natural and Synthetic Data for Few-shot
Table-based Question Answering [106.73213656603453]
最小限のアノテーションによるテーブルベースのQAモデルを構築した。
本稿では、自然データと合成データの両方を消費する全能事前学習手法を提案する。
論文 参考訳(メタデータ) (2022-07-08T01:23:45Z) - Multi-Row, Multi-Span Distant Supervision For Table+Text Question [33.809732338627136]
テーブル上の質問応答(QA)と、TextTableQAとも呼ばれるリンクされたテキストは、近年重要な研究を目撃している。
両軸に沿って遠隔監視を行うように設計された変換器ベースのTextTableQAシステムであるMITQAを提案する。
論文 参考訳(メタデータ) (2021-12-14T12:48:19Z) - MultiModalQA: Complex Question Answering over Text, Tables and Images [52.25399438133274]
テキスト,テーブル,画像に対する共同推論を必要とするデータセットであるMultiModalQAを提案する。
大規模で複雑なマルチモーダル質問を生成するための新しいフレームワークを使用してMMQAを作成します。
次に、単一のモダリティから回答できる質問を受け取り、それらを組み合わせてクロスモーダルな質問を生成する形式言語を定義します。
論文 参考訳(メタデータ) (2021-04-13T09:14:28Z) - Open Question Answering over Tables and Text [55.8412170633547]
オープンな質問応答(QA)では、質問に対する回答は、質問に対する回答を含む可能性のある文書を検索して分析することによって生成される。
ほとんどのオープンQAシステムは、構造化されていないテキストからのみ情報を取得することを検討している。
我々は,このタスクの性能を評価するために,新しい大規模データセット Open Table-and-Text Question Answering (OTT-QA) を提案する。
論文 参考訳(メタデータ) (2020-10-20T16:48:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。