論文の概要: EfficientRAG: Efficient Retriever for Multi-Hop Question Answering
- arxiv url: http://arxiv.org/abs/2408.04259v2
- Date: Thu, 26 Sep 2024 11:42:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-08 12:22:45.574040
- Title: EfficientRAG: Efficient Retriever for Multi-Hop Question Answering
- Title(参考訳): EfficientRAG:マルチホップ質問応答のための効率的なレトリバー
- Authors: Ziyuan Zhuang, Zhiyang Zhang, Sitao Cheng, Fangkai Yang, Jia Liu, Shujian Huang, Qingwei Lin, Saravan Rajmohan, Dongmei Zhang, Qi Zhang,
- Abstract要約: マルチホップ質問応答のための効率的な検索器であるEfficientRAGを紹介する。
実験の結果、EfficientRAGは3つのオープンドメインのマルチホップ質問応答データセット上で既存のRAG手法を超越していることがわかった。
- 参考スコア(独自算出の注目度): 52.64500643247252
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Retrieval-augmented generation (RAG) methods encounter difficulties when addressing complex questions like multi-hop queries. While iterative retrieval methods improve performance by gathering additional information, current approaches often rely on multiple calls of large language models (LLMs). In this paper, we introduce EfficientRAG, an efficient retriever for multi-hop question answering. EfficientRAG iteratively generates new queries without the need for LLM calls at each iteration and filters out irrelevant information. Experimental results demonstrate that EfficientRAG surpasses existing RAG methods on three open-domain multi-hop question-answering datasets.
- Abstract(参考訳): Retrieval-augmented Generation (RAG) メソッドは、マルチホップクエリのような複雑な問題に対処する際に困難に直面する。
反復的な検索手法は付加的な情報を集めることで性能を向上させるが、現在のアプローチは大規模言語モデル(LLM)の複数の呼び出しに依存していることが多い。
本稿では,マルチホップ質問応答のための効率的な検索器であるEfficientRAGを紹介する。
効率的なRAGは、各イテレーションでLLMコールを必要とせずに、新しいクエリを反復的に生成し、無関係な情報をフィルタリングする。
実験の結果、EfficientRAGは3つのオープンドメインのマルチホップ質問応答データセット上で既存のRAG手法を超越していることがわかった。
関連論文リスト
- TreeHop: Generate and Filter Next Query Embeddings Efficiently for Multi-hop Question Answering [27.37434534716611]
TreeHopはマルチホップ質問応答のための埋め込みレベルのフレームワークである。
TreeHopはクエリの埋め込みを動的に更新する。
TreeHopは、知識集約型アプリケーションにデプロイするための、より速く、よりコスト効率の良いソリューションです。
論文 参考訳(メタデータ) (2025-04-28T01:56:31Z) - GRITHopper: Decomposition-Free Multi-Hop Dense Retrieval [52.47514434103737]
GRITHopper-7Bは,最先端性能を実現する新しいマルチホップ高密度検索モデルである。
GRITHopperは、因果言語モデリングと密集した検索訓練を統合することで、生成的および表現的命令チューニングを組み合わせる。
検索後言語モデリングと呼ばれる検索プロセスの後に追加のコンテキストを組み込むことで,検索性能が向上することがわかった。
論文 参考訳(メタデータ) (2025-03-10T16:42:48Z) - Optimizing Multi-Hop Document Retrieval Through Intermediate Representations [1.2010968598596632]
Retrieval-augmented Generation (RAG)は、複雑なクエリ、特にマルチホップ質問に対処する際の課題に遭遇する。
次ホップ情報を取得する中間層からの中間表現を利用して外部知識を抽出するレイヤワイドRAG(L-RAG)を提案する。
実験の結果、L-RAGはオープンドメインのマルチホップ質問応答データセット上で既存のRAG法よりも優れていた。
論文 参考訳(メタデータ) (2025-03-02T11:33:22Z) - LevelRAG: Enhancing Retrieval-Augmented Generation with Multi-hop Logic Planning over Rewriting Augmented Searchers [24.01783076521377]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)における幻覚を緩和するための重要な方法である
既存のRAGメソッドは通常、検索範囲を広げるためにハイブリッド検索を使用しながら、ユーザ意図を明確にし、マルチホップロジックを管理するためにクエリ書き換えを使用する。
本稿では,複雑なクエリをアトミックなクエリに分解する高レベル検索手法を提案する。
高精度なキーワード検索にスパース検索の長所を利用するために,Lucene構文を用いて検索精度を向上させるスパース検索手法を開発した。
論文 参考訳(メタデータ) (2025-02-25T12:09:16Z) - Can we Retrieve Everything All at Once? ARM: An Alignment-Oriented LLM-based Retrieval Method [48.14236175156835]
ARMは、データオブジェクト間の関係を探索することで、データ収集の組織とよりよく一致させることを目指している。
クエリ分解の精度は最大5.2 pt、エージェントRAG(ReAct)は最大15.9 ptである。
最大5.5 pt、19.3 ptのF1マッチスコアをこれらのアプローチと比較して達成する。
論文 参考訳(メタデータ) (2025-01-30T18:07:19Z) - Toward Optimal Search and Retrieval for RAG [39.69494982983534]
Retrieval-augmented Generation (RAG)は、Large Language Models (LLM)に関連するメモリ関連の課題に対処するための有望な方法である。
ここでは、質問回答(QA)などの共通タスクに対して、レトリバーをRAGパイプラインに最適化する方法を理解することを目的としている。
論文 参考訳(メタデータ) (2024-11-11T22:06:51Z) - Benchmarking Multimodal Retrieval Augmented Generation with Dynamic VQA Dataset and Self-adaptive Planning Agent [102.31558123570437]
マルチモーダル大規模言語モデル(MLLM)に固有の「ハロシン化」問題を緩和する上で,mRAG(Multimodal Retrieval Augmented Generation)が重要な役割を果たしている。
マルチモーダル検索のための自己適応型計画エージェントOmniSearchを提案する。
論文 参考訳(メタデータ) (2024-11-05T09:27:21Z) - Retrieve, Summarize, Plan: Advancing Multi-hop Question Answering with an Iterative Approach [6.549143816134531]
二重機能要約器を備えたReSPと呼ばれる新しい反復RAG法を提案する。
マルチホップ質問応答HotpotQAと2WikiMultihopQAの実験結果から,本手法が最先端技術よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-07-18T02:19:00Z) - TRACE the Evidence: Constructing Knowledge-Grounded Reasoning Chains for Retrieval-Augmented Generation [30.485127201645437]
本稿では,RAGモデルのマルチホップ推論能力を高めるためにTRACEを提案する。
TRACEは、論理的に連結された一連の知識三重項である知識基底推論連鎖を構成する。
TRACEは、取得したすべてのドキュメントと比較して、平均14.03%の性能向上を実現している。
論文 参考訳(メタデータ) (2024-06-17T12:23:32Z) - DR-RAG: Applying Dynamic Document Relevance to Retrieval-Augmented Generation for Question-Answering [4.364937306005719]
RAGは最近、質問応答(QA)のような知識集約的なタスクにおいて、LLM(Large Language Models)のパフォーマンスを実証した。
重要な文書とクエリの間には関連性が低いものの,文書の一部とクエリを組み合わせることで,残りの文書を検索できることがわかった。
文書検索のリコールと回答の精度を向上させるために,DR-RAG(Dynamic-Relevant Retrieval-Augmented Generation)と呼ばれる2段階検索フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-11T15:15:33Z) - Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity [59.57065228857247]
Retrieval-augmented Large Language Models (LLMs) は、質問回答(QA)のようなタスクにおける応答精度を高めるための有望なアプローチとして登場した。
本稿では,クエリの複雑さに基づいて,LLMの最適戦略を動的に選択できる適応型QAフレームワークを提案する。
オープンドメインのQAデータセットを用いて、複数のクエリの複雑さを網羅し、QAシステムの全体的な効率性と精度を高めることを示す。
論文 参考訳(メタデータ) (2024-03-21T13:52:30Z) - MultiHop-RAG: Benchmarking Retrieval-Augmented Generation for Multi-Hop
Queries [22.4349439498591]
Retrieval-augmented Generation (RAG)は、関連する知識を検索することで、大きな言語モデル(LLM)を拡張する。
既存のRAGシステムはマルチホップクエリに応答するには不十分であり、複数の証拠を検索して推論する必要がある。
我々は,知識ベース,多数のマルチホップクエリのコレクション,基礎的回答,関連する支持証拠からなる新しいデータセットであるMultiHop-RAGを開発した。
論文 参考訳(メタデータ) (2024-01-27T11:41:48Z) - Joint Passage Ranking for Diverse Multi-Answer Retrieval [56.43443577137929]
質問に対する複数の異なる回答をカバーするために、パスの取得を必要とする探索不足の問題であるマルチアンサー検索について検討する。
モデルが別の有効な答えを逃す費用で同じ答えを含む通路を繰り返すべきではないので、このタスクは、検索された通路の共同モデリングを必要とします。
本稿では,再順位に着目したジョイントパス検索モデルであるJPRを紹介する。
回収された通路の合同確率をモデル化するために、JPRは、新しい訓練および復号アルゴリズムを備えた通路のシーケンスを選択する自動回帰リタイナを利用する。
論文 参考訳(メタデータ) (2021-04-17T04:48:36Z) - Answering Complex Open-Domain Questions with Multi-Hop Dense Retrieval [117.07047313964773]
複雑なオープンドメインの質問に答えるために, 単純で効率的なマルチホップ高密度検索手法を提案する。
本手法では,文書間ハイパーリンクやアノテートされたエンティティマーカーなど,コーパス固有の情報へのアクセスは不要である。
提案システムでは,HotpotQA上でのベストパブリッシュ精度と,推論時の10倍の速度で,より優れた効率・精度のトレードオフも実現している。
論文 参考訳(メタデータ) (2020-09-27T06:12:29Z) - Answering Any-hop Open-domain Questions with Iterative Document
Reranking [62.76025579681472]
オープンドメインの問に答える統合QAフレームワークを提案する。
提案手法は,シングルホップおよびマルチホップのオープンドメインQAデータセットにおいて,最先端技術に匹敵する性能を継続的に達成する。
論文 参考訳(メタデータ) (2020-09-16T04:31:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。