論文の概要: Image2SSM: Reimagining Statistical Shape Models from Images with Radial
Basis Functions
- arxiv url: http://arxiv.org/abs/2305.11946v2
- Date: Fri, 29 Dec 2023 20:16:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-03 02:31:56.247029
- Title: Image2SSM: Reimagining Statistical Shape Models from Images with Radial
Basis Functions
- Title(参考訳): 画像2SSM:放射基底関数を持つ画像からの統計的形状モデルの再構成
- Authors: Hong Xu and Shireen Y. Elhabian
- Abstract要約: 統計的形状モデリングのための新しい深層学習手法であるImage2SSMを提案する。
Image2SSMは、画像から直接形状の放射基底関数(RBF)に基づく表現を学習する。
解剖学的形状のアンサンブルの統計的ランドマークに基づく形状モデルを構築することにより、生物学的構造の個体群を特徴付けることができる。
- 参考スコア(独自算出の注目度): 4.422330219605964
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Statistical shape modeling (SSM) is an essential tool for analyzing
variations in anatomical morphology. In a typical SSM pipeline, 3D anatomical
images, gone through segmentation and rigid registration, are represented using
lower-dimensional shape features, on which statistical analysis can be
performed. Various methods for constructing compact shape representations have
been proposed, but they involve laborious and costly steps. We propose
Image2SSM, a novel deep-learning-based approach for SSM that leverages
image-segmentation pairs to learn a radial-basis-function (RBF)-based
representation of shapes directly from images. This RBF-based shape
representation offers a rich self-supervised signal for the network to estimate
a continuous, yet compact representation of the underlying surface that can
adapt to complex geometries in a data-driven manner. Image2SSM can characterize
populations of biological structures of interest by constructing statistical
landmark-based shape models of ensembles of anatomical shapes while requiring
minimal parameter tuning and no user assistance. Once trained, Image2SSM can be
used to infer low-dimensional shape representations from new unsegmented
images, paving the way toward scalable approaches for SSM, especially when
dealing with large cohorts. Experiments on synthetic and real datasets show the
efficacy of the proposed method compared to the state-of-art
correspondence-based method for SSM.
- Abstract(参考訳): 統計的形状モデリング(SSM)は解剖学的形態変化を解析するための重要なツールである。
典型的なSSMパイプラインでは、セグメント化と剛性登録を経た3次元解剖画像は、統計的解析が可能な低次元形状特徴を用いて表現される。
コンパクトな形状表現を構築するための様々な方法が提案されているが、それらは手間とコストのかかるステップを伴う。
本研究では,画像から形状のラジアル・ベイシス関数(rbf)に基づく表現を学習するために,画像セグメンテーションペアを利用した新しい深層学習手法であるimage2ssmを提案する。
このrpfベースの形状表現は、複雑なジオメトリにデータ駆動方式で適応できる基礎面の連続的かつコンパクトな表現を推定するために、ネットワークに豊富な自己教師付き信号を提供する。
image2ssmは、最小限のパラメータチューニングとユーザ支援を必要とせず、解剖学的形状のアンサンブルの統計的ランドマークに基づく形状モデルを構築して、興味のある生物学的構造の集団を特徴付けることができる。
トレーニングが完了すると、Image2SSMは、新しい未分割画像から低次元の形状表現を推測するために使用でき、特に大きなコホートを扱う場合、SSMのスケーラブルなアプローチへの道を開くことができる。
合成および実データを用いた実験は,SSMの最先端対応方式と比較して提案手法の有効性を示した。
関連論文リスト
- Efficient Visual State Space Model for Image Deblurring [83.57239834238035]
畳み込みニューラルネットワーク(CNN)とビジョントランスフォーマー(ViT)は、画像復元において優れた性能を発揮している。
本稿では,画像のデブロアに対する簡易かつ効果的な視覚状態空間モデル(EVSSM)を提案する。
論文 参考訳(メタデータ) (2024-05-23T09:13:36Z) - ADASSM: Adversarial Data Augmentation in Statistical Shape Models From
Images [0.8192907805418583]
本稿では,データ依存型ノイズ生成やテクスチャ拡張を利用して,画像間SSMフレームワークのオンザフライデータ拡張のための新しい戦略を提案する。
提案手法は,画素値のみに頼らず,基礎となる幾何学に焦点をあてることにより,精度の向上を実現する。
論文 参考訳(メタデータ) (2023-07-06T20:21:12Z) - Mesh2SSM: From Surface Meshes to Statistical Shape Models of Anatomy [0.0]
我々は、教師なしの置換不変表現学習を利用して、テンプレートポイントクラウドを主題固有のメッシュに変形する方法を推定する新しいアプローチであるMesh2SSMを提案する。
Mesh2SSMは集団固有のテンプレートも学習でき、テンプレート選択によるバイアスを低減できる。
論文 参考訳(メタデータ) (2023-05-13T00:03:59Z) - S3M: Scalable Statistical Shape Modeling through Unsupervised
Correspondences [91.48841778012782]
本研究では,集団解剖学における局所的および大域的形状構造を同時に学習するための教師なし手法を提案する。
我々のパイプラインは、ベースライン法と比較して、SSMの教師なし対応推定を大幅に改善する。
我々の手法は、ノイズの多いニューラルネットワーク予測から学ぶのに十分堅牢であり、より大きな患者にSSMを拡張できる可能性がある。
論文 参考訳(メタデータ) (2023-04-15T09:39:52Z) - Spatiotemporal Cardiac Statistical Shape Modeling: A Data-Driven
Approach [0.0]
粒子ベース形状モデリング(PSM)は、個体群レベルの形状変化を捉えたデータ駆動型手法である。
本稿では,PSM法にインスパイアされたデータ駆動型手法を提案する。
論文 参考訳(メタデータ) (2022-09-06T18:00:45Z) - Dynamic multi feature-class Gaussian process models [0.0]
本研究では, 医用画像における形状, ポーズ, 強度特徴の自動学習のための統計的モデリング手法を提案する。
DMFC-GPM (DMFC-GPM) はガウス過程(GP)に基づくモデルであり、線形および非線形の変動を符号化する潜在空間を共有する。
モデル性能の結果は、この新しいモデリングパラダイムが堅牢で、正確で、アクセス可能であり、潜在的な応用があることを示唆している。
論文 参考訳(メタデータ) (2021-12-08T15:12:47Z) - DeepSSM: A Blueprint for Image-to-Shape Deep Learning Models [4.608133071225539]
統計的形状モデリング(SSM)は、医学画像から生成される形状の個体群における解剖学的変異を特徴付ける。
DeepSSMは、ディープラーニングベースのイメージ・トゥ・シェイプモデルのための青写真を提供することを目指している。
論文 参考訳(メタデータ) (2021-10-14T04:52:37Z) - PaMIR: Parametric Model-Conditioned Implicit Representation for
Image-based Human Reconstruction [67.08350202974434]
本研究では,パラメトリックボディモデルと自由形深部暗黙関数を組み合わせたパラメトリックモデル記述型暗黙表現(PaMIR)を提案する。
本手法は, 挑戦的なポーズや衣料品のタイプにおいて, 画像に基づく3次元再構築のための最先端性能を実現する。
論文 参考訳(メタデータ) (2020-07-08T02:26:19Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
マルチスケールの伝搬により微分同相モデルを最適化する,新しいディープラーニングベースのフレームワークを開発した。
我々は,脳MRIデータにおける画像-アトラス登録,肝CTデータにおける画像-画像登録を含む,3次元ボリュームデータセットにおける画像登録実験の2つのグループを実行する。
論文 参考訳(メタデータ) (2020-04-30T03:23:45Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z) - Monocular Human Pose and Shape Reconstruction using Part Differentiable
Rendering [53.16864661460889]
近年の研究では、3次元基底真理によって教師されるディープニューラルネットワークを介してパラメトリックモデルを直接推定する回帰に基づく手法が成功している。
本稿では,ボディセグメンテーションを重要な監視対象として紹介する。
部分分割による再構成を改善するために,部分分割により部分ベースモデルを制御可能な部分レベル微分可能部を提案する。
論文 参考訳(メタデータ) (2020-03-24T14:25:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。