論文の概要: Towards Robust Personalized Dialogue Generation via Order-Insensitive
Representation Regularization
- arxiv url: http://arxiv.org/abs/2305.12782v1
- Date: Mon, 22 May 2023 07:24:29 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-23 17:50:45.927535
- Title: Towards Robust Personalized Dialogue Generation via Order-Insensitive
Representation Regularization
- Title(参考訳): 順序非知覚表現正規化によるロバストなパーソナライズ対話生成
- Authors: Liang Chen, Hongru Wang, Yang Deng, Wai-Chung Kwan, Zezhong Wang and
Kam-Fai Wong
- Abstract要約: 本稿では,オーダ・インセンシティブ・ジェネレーション(ORIG)というモデルに依存しないフレームワークを提案する。
Persona-Chatデータセットの実験は,本手法の有効性と優位性を正当化するものである。
- 参考スコア(独自算出の注目度): 20.722098595079945
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generating persona consistent dialogue response is important for developing
an intelligent conversational agent. Recent works typically fine-tune
large-scale pre-trained models on this task by concatenating persona texts and
dialogue history as a single input sequence to generate the target response.
While simple and effective, our analysis shows that this popular practice is
seriously affected by order sensitivity where different input orders of persona
sentences significantly impact the quality and consistency of generated
response, resulting in severe performance fluctuations (i.e., 29.4% on GPT2 and
83.2% on BART). To mitigate the order sensitivity problem, we propose a
model-agnostic framework, ORder Insensitive Generation (ORIG), which enables
dialogue models to learn robust representation under different persona orders
and improve the consistency of response generation. Experiments on the
Persona-Chat dataset justify the effectiveness and superiority of our method
with two dominant pre-trained models (GPT2 and BART).
- Abstract(参考訳): インテリジェントな対話エージェントを開発するためには,ペルソナ一貫した対話応答の生成が重要である。
近年の課題は、ペルソナテキストと対話履歴を単一の入力シーケンスとして結合し、ターゲットの応答を生成することで、このタスクの大規模事前学習モデルを微調整する。
単純かつ効果的であるが,本研究では,人格的文の入力順序の違いが生成した応答の質と一貫性に大きく影響し,結果として高い性能変動(gpt2では29.4%,bartでは83.2%)が生じた。
注文感度問題を緩和するために,対話モデルで異なるペルソナ順序下で堅牢な表現を学習し,応答生成の整合性を改善するためのモデル非依存フレームワークORIG(ORder Insensitive Generation)を提案する。
Persona-Chatデータセットの実験は,2つの先行訓練モデル(GPT2とBART)を用いて,本手法の有効性と優位性を正当化する。
関連論文リスト
- Enhancing Personality Recognition in Dialogue by Data Augmentation and
Heterogeneous Conversational Graph Networks [30.33718960981521]
パーソナリティ認識は、ユーザ適応応答をカスタマイズするロボットの能力を高めるのに有用である。
この課題の1つは、既存の対話コーパスにおける話者の限られた数である。
論文 参考訳(メタデータ) (2024-01-11T12:27:33Z) - PICK: Polished & Informed Candidate Scoring for Knowledge-Grounded
Dialogue Systems [59.1250765143521]
現在の知識接地対話システムは、生成された応答を人間に好まれる品質に合わせるのに失敗することが多い。
我々は,世代別再描画フレームワークであるPolseed & Informed Candidate Scoring (PICK)を提案する。
対話履歴に関連性を維持しつつ,より忠実な応答を生成するためのPICKの有効性を示す。
論文 参考訳(メタデータ) (2023-09-19T08:27:09Z) - WHAT, WHEN, and HOW to Ground: Designing User Persona-Aware
Conversational Agents for Engaging Dialogue [4.328280329592151]
本稿では,WWH問題に対処するオープンドメイン対話システムを構築する方法を提案する。
提案手法は、重み付けされたデータセットブレンディング、ネガティブなペルソナ情報拡張方法、パーソナライズされた会話データセットの設計を含む。
本研究は,対話の流速と接地傾向のバランスを効果的に保ちつつ,接地応答の制御性と説明性を向上させるための応答型ラベルを導入する。
論文 参考訳(メタデータ) (2023-06-06T02:28:38Z) - SimOAP: Improve Coherence and Consistency in Persona-based Dialogue
Generation via Over-sampling and Post-evaluation [54.66399120084227]
大規模コーパスで訓練された言語モデルは、オープンドメイン対話において驚くほど流動的な結果を生み出すことができる。
ペルソナに基づく対話生成タスクでは、一貫性と一貫性が言語モデルにとって大きな課題である。
オーバーサンプリングとポスト評価という2段階のSimOAP戦略が提案されている。
論文 参考訳(メタデータ) (2023-05-18T17:23:00Z) - Controllable Mixed-Initiative Dialogue Generation through Prompting [50.03458333265885]
混合開始対話タスクには、情報の繰り返し交換と会話制御が含まれる。
エージェントは、ポリシープランナーが定める特定の対話意図や戦略に従う応答を生成することにより、コントロールを得る。
標準的なアプローチは、これらの意図に基づいて生成条件を実行するために、訓練済みの言語モデルを微調整している。
代わりに、条件生成の微調整に代えて、大きな言語モデルをドロップインで置き換えるように促します。
論文 参考訳(メタデータ) (2023-05-06T23:11:25Z) - A Model-Agnostic Data Manipulation Method for Persona-based Dialogue
Generation [107.82729587882397]
現在のペルソナベースの対話データセットのスケールアップには費用がかかる。
このタスクの各データサンプルは、従来の対話データよりも複雑である。
本稿では,ペルソナをベースとした対話生成モデルにおいて,モデルに依存しないデータ操作手法を提案する。
論文 参考訳(メタデータ) (2022-04-21T03:49:54Z) - Dual Task Framework for Debiasing Persona-grounded Dialogue Dataset [17.403065663306567]
我々は、ペルソナ条件の対話エージェントを改善するために、データ中心のアプローチを導入する。
具体的には,2つのタスクの原始的双対構造を活用することで,対話データセット/エージェントを改善するための関連するペルソナを強化する。
Persona-Chat の実験により,本手法は訓練済みの LM よりも精度が 11.7 ポイント向上していることが示された。
論文 参考訳(メタデータ) (2022-02-11T04:08:46Z) - Bilateral Personalized Dialogue Generation with Dynamic Persona-Aware
Fusion [3.5433229509828155]
マルチタスク・トランスファー・ラーニングによる動的ペルソナ・アウェア・フュージョンを用いた双方向対話生成手法を提案する。
実験の結果,提案手法は自動評価と手動評価の両面で,いくつかの最先端手法よりも優れていた。
論文 参考訳(メタデータ) (2021-06-15T03:21:19Z) - Partner Matters! An Empirical Study on Fusing Personas for Personalized
Response Selection in Retrieval-Based Chatbots [51.091235903442715]
本稿では,自己とパートナーの話者が応答選択の課題に与える影響について検討する。
4つのペルソナ融合戦略が設計されており、異なる方法でペルソナがコンテキストや応答と相互作用することを前提としている。
Persona-Chatデータセットに関する実証研究は、パートナーペルソナが応答選択の精度を向上させることができることを示している。
論文 参考訳(メタデータ) (2021-05-19T10:32:30Z) - You Impress Me: Dialogue Generation via Mutual Persona Perception [62.89449096369027]
認知科学の研究は、理解が高品質なチャット会話に不可欠なシグナルであることを示唆している。
そこで我々は,P2 Botを提案する。このP2 Botは,理解を明示的にモデル化することを目的とした送信機受信者ベースのフレームワークである。
論文 参考訳(メタデータ) (2020-04-11T12:51:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。