論文の概要: Bayesian Numerical Integration with Neural Networks
- arxiv url: http://arxiv.org/abs/2305.13248v2
- Date: Sun, 10 Sep 2023 19:17:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-12 21:29:30.863716
- Title: Bayesian Numerical Integration with Neural Networks
- Title(参考訳): ニューラルネットワークによるベイジアン数値積分
- Authors: Katharina Ott, Michael Tiemann, Philipp Hennig, Fran\c{c}ois-Xavier
Briol
- Abstract要約: ベイジアン・スタイン・ネットワーク(Bayesian Stein Network)と呼ばれるベイジアン・ニューラルネットワークに基づく代替手法を提案する。
鍵となる要素は、スタイン演算子に基づくニューラルネットワークアーキテクチャと、ラプラス近似に基づくベイズ後部の近似である。
これは、人気のあるGenz関数のベンチマークにおける桁違いのスピードアップと、力学系のベイズ解析で生じる問題に繋がることを示す。
- 参考スコア(独自算出の注目度): 27.807370932294326
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bayesian probabilistic numerical methods for numerical integration offer
significant advantages over their non-Bayesian counterparts: they can encode
prior information about the integrand, and can quantify uncertainty over
estimates of an integral. However, the most popular algorithm in this class,
Bayesian quadrature, is based on Gaussian process models and is therefore
associated with a high computational cost. To improve scalability, we propose
an alternative approach based on Bayesian neural networks which we call
Bayesian Stein networks. The key ingredients are a neural network architecture
based on Stein operators, and an approximation of the Bayesian posterior based
on the Laplace approximation. We show that this leads to orders of magnitude
speed-ups on the popular Genz functions benchmark, and on challenging problems
arising in the Bayesian analysis of dynamical systems, and the prediction of
energy production for a large-scale wind farm.
- Abstract(参考訳): ベイズ確率的数値積分法は、積分に関する事前情報を符号化し、積分の推定に対する不確かさを定量化することができる。
しかし、このクラスで最も人気のあるアルゴリズムであるベイズ二次アルゴリズムはガウス過程モデルに基づいており、高い計算コストに関連している。
スケーラビリティを向上させるために,ベイジアン・スタインネットワークと呼ぶベイジアンニューラルネットワークに基づく代替手法を提案する。
鍵となる要素は、スタイン演算子に基づくニューラルネットワークアーキテクチャと、ラプラス近似に基づくベイズ後部の近似である。
このことは、人気のあるGenz関数ベンチマークの桁違いのスピードアップや、力学系のベイズ解析による問題、大規模風力発電所におけるエネルギー生産の予測につながっていることを示す。
関連論文リスト
- Unrolled denoising networks provably learn optimal Bayesian inference [54.79172096306631]
我々は、近似メッセージパッシング(AMP)のアンロールに基づくニューラルネットワークの最初の厳密な学習保証を証明した。
圧縮センシングでは、製品から引き出されたデータに基づいてトレーニングを行うと、ネットワークの層がベイズAMPで使用されるのと同じデノイザーに収束することを示す。
論文 参考訳(メタデータ) (2024-09-19T17:56:16Z) - Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels [57.46832672991433]
ケルネル学習とBayesian Spike-and-Slab pres (KBASS)に基づく新しい方程式探索法を提案する。
カーネルレグレッションを用いてターゲット関数を推定する。これはフレキシブルで表現力があり、データ空間やノイズに対してより堅牢である。
我々は,効率的な後部推論と関数推定のための予測伝搬予測最大化アルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-10-09T03:55:09Z) - Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization [73.80101701431103]
線形化ラプラス近似(LLA)はベイズニューラルネットワークの構築に有効で効率的であることが示されている。
ベイズ最適化におけるLLAの有用性について検討し,その性能と柔軟性を強調した。
論文 参考訳(メタデータ) (2023-04-17T14:23:43Z) - Classified as unknown: A novel Bayesian neural network [0.0]
完全連結ニューラルネットワークのための効率の良いベイズ学習アルゴリズムを開発した。
多層パーセプトロンから多層パーセプトロンへの二元分類のための単一パーセプトロンのアルゴリズムを一般化する。
論文 参考訳(メタデータ) (2023-01-31T04:27:09Z) - Robust Training and Verification of Implicit Neural Networks: A
Non-Euclidean Contractive Approach [64.23331120621118]
本稿では,暗黙的ニューラルネットワークのトレーニングとロバスト性検証のための理論的および計算的枠組みを提案する。
組込みネットワークを導入し、組込みネットワークを用いて、元のネットワークの到達可能な集合の超近似として$ell_infty$-normボックスを提供することを示す。
MNISTデータセット上で暗黙的なニューラルネットワークをトレーニングするためにアルゴリズムを適用し、我々のモデルの堅牢性と、文献における既存のアプローチを通じてトレーニングされたモデルを比較する。
論文 参考訳(メタデータ) (2022-08-08T03:13:24Z) - Look beyond labels: Incorporating functional summary information in
Bayesian neural networks [11.874130244353253]
予測確率に関する要約情報を組み込むための簡単な手法を提案する。
利用可能な要約情報は、拡張データとして組み込まれ、ディリクレプロセスでモデル化される。
本稿では,タスクの難易度やクラス不均衡をモデルに示す方法について述べる。
論文 参考訳(メタデータ) (2022-07-04T07:06:45Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
既存の不確実性推定アルゴリズムでは、モデルアーキテクチャとトレーニング手順を変更する必要がある。
本研究では、与えられたトレーニングされたニューラルネットワークに適用し、近似予測間隔を生成できる新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-06T13:18:31Z) - PAC-Bayesian Learning of Aggregated Binary Activated Neural Networks
with Probabilities over Representations [2.047424180164312]
本研究では,確率論的ニューラルネットワークの予測器としての期待値について検討し,実数値重みによる正規分布を持つ二元活性化ニューラルネットワークの集約に着目した。
我々は、動的プログラミングアプローチのおかげで、深いが狭いニューラルネットワークに対して、正確な計算が引き続き実行可能であることを示す。
論文 参考訳(メタデータ) (2021-10-28T14:11:07Z) - The Ridgelet Prior: A Covariance Function Approach to Prior
Specification for Bayesian Neural Networks [4.307812758854161]
ネットワークの出力空間における擬似ガウス過程を近似したネットワークのパラメータに対する事前分布を構築する。
これにより、ベイズニューラルネットワークが共分散関数が十分正則である任意のガウス過程を近似できるという性質が確立される。
論文 参考訳(メタデータ) (2020-10-16T16:39:45Z) - Bayesian Deep Learning and a Probabilistic Perspective of Generalization [56.69671152009899]
ディープアンサンブルはベイズ辺化を近似する有効なメカニズムであることを示す。
また,アトラクションの流域内での辺縁化により,予測分布をさらに改善する関連手法を提案する。
論文 参考訳(メタデータ) (2020-02-20T15:13:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。