論文の概要: A 4D Hybrid Algorithm to Scale Parallel Training to Thousands of GPUs
- arxiv url: http://arxiv.org/abs/2305.13525v2
- Date: Wed, 27 Mar 2024 17:47:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 23:22:06.703608
- Title: A 4D Hybrid Algorithm to Scale Parallel Training to Thousands of GPUs
- Title(参考訳): 数千のGPUに並列トレーニングをスケールする4Dハイブリッドアルゴリズム
- Authors: Siddharth Singh, Prajwal Singhania, Aditya K. Ranjan, Zack Sating, Abhinav Bhatele,
- Abstract要約: 大規模通信コストは、分散システム上で最先端のニューラルネットワークをトレーニングする上で、重要なボトルネックとなる。
本稿では,新しい4次元並列化手法であるAxoNNを紹介する。
AxoNNは通信オーバーヘッドを最小限にするために2つの重要な戦略を採用している。
- 参考スコア(独自算出の注目度): 1.7481226034111275
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large communication costs are a critical bottleneck in training state-of-the-art neural networks on distributed systems. This paper introduces AxoNN, a novel four-dimensional (4D) parallelization approach, inspired by Agarwal's algorithm for matrix multiplication, for parallelizing tensor computations in deep learning, AxoNN employs two key strategies to minimize communication overhead. First, we optimize communication by overlapping expensive collective operations (reduce-scatter, all-gather, all-reduce) with computations. Our experiments with a 20-billion parameter transformer model demonstrate that these optimizations deliver nearly 53\% improvement. Second, we present an analytical model to assist users in identifying communication-minimizing configurations within the vast search space defined by our 4D algorithm. This model empowers practitioners by simplifying the tuning process for their specific training workloads. When training an 80-billion parameter model on 1024 GPUs of Perlmutter, AxoNN surpasses Megatron-LM, a state-of-the-art framework, by a significant 26%. Additionally, it achieves 57% of the theoretical peak FLOP/s.
- Abstract(参考訳): 大規模通信コストは、分散システム上で最先端のニューラルネットワークをトレーニングする上で、重要なボトルネックとなる。
本稿では,AxoNNを提案する。AxoNNは,Agarwalの行列乗算アルゴリズムに触発されて,ディープラーニングにおけるテンソル計算を並列化する4次元並列化手法であり,通信オーバーヘッドを最小限に抑えるために2つの重要な戦略を採用している。
まず,高コストな集合演算(reduce-scatter, all-gather, all-reduce)と計算処理を重畳して通信を最適化する。
20ビリオンのパラメータ変換器モデルによる実験により、これらの最適化は53倍近い改善をもたらすことが示された。
第2に,我々の4Dアルゴリズムが定義する膨大な検索空間内における通信最小化構成の同定を支援する解析モデルを提案する。
このモデルは、特定のトレーニングワークロードのチューニングプロセスをシンプルにすることで、実践者に力を与えます。
Perlmutterの1024 GPU上で80ビリオンのパラメータモデルをトレーニングする場合、AxoNNは最先端のフレームワークであるMegatron-LMを26%上回った。
さらに、理論的ピークFLOP/sの57%を達成している。
関連論文リスト
- FusionLLM: A Decentralized LLM Training System on Geo-distributed GPUs with Adaptive Compression [55.992528247880685]
分散トレーニングは、システム設計と効率に関する重要な課題に直面します。
大規模深層ニューラルネットワーク(DNN)のトレーニング用に設計・実装された分散トレーニングシステムFusionLLMを提案する。
本システムと手法は,収束性を確保しつつ,ベースライン法と比較して1.45~9.39倍の高速化を実現可能であることを示す。
論文 参考訳(メタデータ) (2024-10-16T16:13:19Z) - Partitioned Neural Network Training via Synthetic Intermediate Labels [0.0]
GPUメモリの制約は、そのような巨大なモデルをトレーニングする上で、注目すべきボトルネックになっている。
この研究は、モデルをGPU間で分割し、個々のセグメントをトレーニングするために合成中間ラベルを生成することを提唱する。
このアプローチは、モデル精度を維持しながらデータ通信を最小限に抑える、より効率的なトレーニングプロセスをもたらす。
論文 参考訳(メタデータ) (2024-03-17T13:06:29Z) - Scaling Studies for Efficient Parameter Search and Parallelism for Large
Language Model Pre-training [2.875838666718042]
並列および分散機械学習アルゴリズムの開発,特に5個のエンコーダデコーダLLMのデータの処理と事前学習の最適化に着目する。
我々は3つのMLメソッド間の関係を定量化するための詳細な研究を行い、特にMicrosoft DeepSpeed Zero Redundancyのステージを探索した。
論文 参考訳(メタデータ) (2023-10-09T02:22:00Z) - A Hybrid Tensor-Expert-Data Parallelism Approach to Optimize
Mixture-of-Experts Training [13.346719319555943]
Mixture-of-Experts (MoE)は、ベースモデルにわずかにアクティベートされたエキスパートブロックを追加するニューラルネットワークアーキテクチャである。
現在の分散ディープラーニングフレームワークは、大規模なベースモデルで高品質なMoEモデルをトレーニングする能力に制限がある。
本稿では,データ,テンソル,エキスパート並列性を組み合わせた3次元ハイブリッド並列アルゴリズムDeepSpeed-TEDを提案する。
論文 参考訳(メタデータ) (2023-03-11T05:38:15Z) - Exploiting Sparsity in Pruned Neural Networks to Optimize Large Model
Training [1.5301777464637454]
並列深層学習のための2つの一般的なアルゴリズムにおいて,スパースワークを利用してメモリ利用と通信を最適化する手法を提案する。
我々は、並列ディープラーニングのための高度にスケーラブルなフレームワークであるAxoNNにアプローチを統合し、通信時間とメモリ使用量の削減を実証する。
論文 参考訳(メタデータ) (2023-02-10T04:22:25Z) - Partitioning Distributed Compute Jobs with Reinforcement Learning and
Graph Neural Networks [58.720142291102135]
大規模な機械学習モデルは、幅広い分野に進歩をもたらしている。
これらのモデルの多くは、単一のマシンでトレーニングするには大きすぎるため、複数のデバイスに分散する必要がある。
スループットやブロッキングレートといったユーザクリティカルな指標に対して,並列化の最大化が準最適であることを示す。
論文 参考訳(メタデータ) (2023-01-31T17:41:07Z) - SWARM Parallelism: Training Large Models Can Be Surprisingly
Communication-Efficient [69.61083127540776]
ディープラーニングアプリケーションは、数十億のパラメータを持つ大きなモデルを使用することの恩恵を受ける。
これらのモデルのトレーニングは、特殊なHPCクラスタを必要とするため、非常に高価である。
安価な"プリエンプティブル"インスタンスを使用するか、あるいは複数のリージョンから既存のリソースをプールする。
論文 参考訳(メタデータ) (2023-01-27T18:55:19Z) - Training Recommender Systems at Scale: Communication-Efficient Model and
Data Parallelism [56.78673028601739]
通信効率のよいハイブリッドトレーニングのためのDCT(Dynamic Communication Thresholding)という圧縮フレームワークを提案する。
DCTは、それぞれDPとMPの間に、少なくとも$100times$と$20times$の通信を削減します。
最先端の産業レコメンデーションモデルのエンドツーエンドのトレーニング時間を、パフォーマンスを損なうことなく、37%改善する。
論文 参考訳(メタデータ) (2020-10-18T01:44:42Z) - Scaling Distributed Deep Learning Workloads beyond the Memory Capacity
with KARMA [58.040931661693925]
冗長な再計算とアウト・オブ・コアの手法を組み合わせた戦略を提案する。
最先端のアウト・オブ・コア手法を用いて,6種類のモデルで平均1.22倍の高速化を実現した。
我々のデータ並列化ソリューションは,Megatron-LMやTurning-NLGといった大規模モデルのトレーニングにおいて,複雑なハイブリッドモデル並列性よりも優れる。
論文 参考訳(メタデータ) (2020-08-26T07:24:34Z) - The Case for Strong Scaling in Deep Learning: Training Large 3D CNNs
with Hybrid Parallelism [3.4377970608678314]
大規模3次元畳み込みニューラルネットワークを学習するためのスケーラブルなハイブリッド並列アルゴリズムを提案する。
提案したトレーニングアルゴリズムを,CosmoFlowと3D U-Netの2つの挑戦的な3D CNNを用いて評価した。
論文 参考訳(メタデータ) (2020-07-25T05:06:06Z) - Large-Scale Gradient-Free Deep Learning with Recursive Local
Representation Alignment [84.57874289554839]
大規模データセット上でディープニューラルネットワークをトレーニングするには、重要なハードウェアリソースが必要である。
これらのネットワークをトレーニングするためのワークホースであるバックプロパゲーションは、本質的に並列化が難しいシーケンシャルなプロセスである。
本稿では、深層ネットワークのトレーニングに使用できるバックプロップに代わる、神経生物学的に有望な代替手段を提案する。
論文 参考訳(メタデータ) (2020-02-10T16:20:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。