論文の概要: A 4D Hybrid Algorithm to Scale Parallel Training to Thousands of GPUs
- arxiv url: http://arxiv.org/abs/2305.13525v3
- Date: Tue, 14 May 2024 12:07:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-15 20:00:15.051591
- Title: A 4D Hybrid Algorithm to Scale Parallel Training to Thousands of GPUs
- Title(参考訳): 数千のGPUに並列トレーニングをスケールする4Dハイブリッドアルゴリズム
- Authors: Siddharth Singh, Prajwal Singhania, Aditya K. Ranjan, Zack Sating, Abhinav Bhatele,
- Abstract要約: 本稿では,並列訓練における通信を最適化するための4次元(4次元)アプローチを提案する。
AxoNNは最先端のフレームワークであるMegatron-LMを26%上回っている。
理論上のピークFLOP/sの57%、合計182 PFLOP/sを達成している。
- 参考スコア(独自算出の注目度): 1.7481226034111275
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Heavy communication, in particular, collective operations, can become a critical performance bottleneck in scaling the training of billion-parameter neural networks to large-scale parallel systems. This paper introduces a four-dimensional (4D) approach to optimize communication in parallel training. This 4D approach is a hybrid of 3D tensor and data parallelism, and is implemented in the AxoNN framework. In addition, we employ two key strategies to further minimize communication overheads. First, we aggressively overlap expensive collective operations (reduce-scatter, all-gather, and all-reduce) with computation. Second, we develop an analytical model to identify high-performing configurations within the large search space defined by our 4D algorithm. This model empowers practitioners by simplifying the tuning process for their specific training workloads. When training an 80-billion parameter GPT on 1024 GPUs of Perlmutter, AxoNN surpasses Megatron-LM, a state-of-the-art framework, by a significant 26%. Additionally, it achieves a significantly high 57% of the theoretical peak FLOP/s or 182 PFLOP/s in total.
- Abstract(参考訳): 重通信、特に集合的操作は、数十億のパラメータニューラルネットワークのトレーニングを大規模並列システムにスケールアップする上で、重要なパフォーマンスボトルネックとなる可能性がある。
本稿では,並列訓練における通信を最適化するための4次元(4次元)アプローチを提案する。
この4Dアプローチは3Dテンソルとデータ並列性のハイブリッドであり、AxoNNフレームワークで実装されている。
さらに,通信オーバーヘッドを最小化するための2つの重要な戦略も採用している。
まず,高コストな集合演算(reduce-scatter,all-gather,all-reduce)と計算処理を積極的にオーバーラップする。
第二に、我々は、我々の4Dアルゴリズムで定義される大規模検索空間内での高性能な構成を特定するための分析モデルを構築した。
このモデルは、特定のトレーニングワークロードのチューニングプロセスをシンプルにすることで、実践者に力を与えます。
Perlmutterの1024 GPU上で80ビリオンパラメータのGPTをトレーニングする場合、AxoNNは最先端のフレームワークであるMegatron-LMを26%上回った。
さらに、理論的なピークFLOP/sの57%、または合計182 PFLOP/sを実現している。
関連論文リスト
- Partitioned Neural Network Training via Synthetic Intermediate Labels [0.0]
GPUメモリの制約は、そのような巨大なモデルをトレーニングする上で、注目すべきボトルネックになっている。
この研究は、モデルをGPU間で分割し、個々のセグメントをトレーニングするために合成中間ラベルを生成することを提唱する。
このアプローチは、モデル精度を維持しながらデータ通信を最小限に抑える、より効率的なトレーニングプロセスをもたらす。
論文 参考訳(メタデータ) (2024-03-17T13:06:29Z) - Scaling Studies for Efficient Parameter Search and Parallelism for Large
Language Model Pre-training [2.875838666718042]
並列および分散機械学習アルゴリズムの開発,特に5個のエンコーダデコーダLLMのデータの処理と事前学習の最適化に着目する。
我々は3つのMLメソッド間の関係を定量化するための詳細な研究を行い、特にMicrosoft DeepSpeed Zero Redundancyのステージを探索した。
論文 参考訳(メタデータ) (2023-10-09T02:22:00Z) - A Hybrid Tensor-Expert-Data Parallelism Approach to Optimize
Mixture-of-Experts Training [13.346719319555943]
Mixture-of-Experts (MoE)は、ベースモデルにわずかにアクティベートされたエキスパートブロックを追加するニューラルネットワークアーキテクチャである。
現在の分散ディープラーニングフレームワークは、大規模なベースモデルで高品質なMoEモデルをトレーニングする能力に制限がある。
本稿では,データ,テンソル,エキスパート並列性を組み合わせた3次元ハイブリッド並列アルゴリズムDeepSpeed-TEDを提案する。
論文 参考訳(メタデータ) (2023-03-11T05:38:15Z) - Exploiting Sparsity in Pruned Neural Networks to Optimize Large Model
Training [1.5301777464637454]
並列深層学習のための2つの一般的なアルゴリズムにおいて,スパースワークを利用してメモリ利用と通信を最適化する手法を提案する。
我々は、並列ディープラーニングのための高度にスケーラブルなフレームワークであるAxoNNにアプローチを統合し、通信時間とメモリ使用量の削減を実証する。
論文 参考訳(メタデータ) (2023-02-10T04:22:25Z) - Partitioning Distributed Compute Jobs with Reinforcement Learning and
Graph Neural Networks [58.720142291102135]
大規模な機械学習モデルは、幅広い分野に進歩をもたらしている。
これらのモデルの多くは、単一のマシンでトレーニングするには大きすぎるため、複数のデバイスに分散する必要がある。
スループットやブロッキングレートといったユーザクリティカルな指標に対して,並列化の最大化が準最適であることを示す。
論文 参考訳(メタデータ) (2023-01-31T17:41:07Z) - SWARM Parallelism: Training Large Models Can Be Surprisingly
Communication-Efficient [69.61083127540776]
ディープラーニングアプリケーションは、数十億のパラメータを持つ大きなモデルを使用することの恩恵を受ける。
これらのモデルのトレーニングは、特殊なHPCクラスタを必要とするため、非常に高価である。
安価な"プリエンプティブル"インスタンスを使用するか、あるいは複数のリージョンから既存のリソースをプールする。
論文 参考訳(メタデータ) (2023-01-27T18:55:19Z) - FPGA-based AI Smart NICs for Scalable Distributed AI Training Systems [62.20308752994373]
我々は、フィールドプログラマブルゲートアレイ(FPGA)を用いた分散AI訓練システムのための新しいスマートネットワークインタフェースカード(NIC)を提案する。
提案するFPGAベースのAIスマートNICは,従来のNICを用いたベースラインシステムと比較して,6ノードで1.6倍,32ノードで2.5倍の性能向上が期待できる。
論文 参考訳(メタデータ) (2022-04-22T21:57:00Z) - Training Recommender Systems at Scale: Communication-Efficient Model and
Data Parallelism [56.78673028601739]
通信効率のよいハイブリッドトレーニングのためのDCT(Dynamic Communication Thresholding)という圧縮フレームワークを提案する。
DCTは、それぞれDPとMPの間に、少なくとも$100times$と$20times$の通信を削減します。
最先端の産業レコメンデーションモデルのエンドツーエンドのトレーニング時間を、パフォーマンスを損なうことなく、37%改善する。
論文 参考訳(メタデータ) (2020-10-18T01:44:42Z) - Scaling Distributed Deep Learning Workloads beyond the Memory Capacity
with KARMA [58.040931661693925]
冗長な再計算とアウト・オブ・コアの手法を組み合わせた戦略を提案する。
最先端のアウト・オブ・コア手法を用いて,6種類のモデルで平均1.22倍の高速化を実現した。
我々のデータ並列化ソリューションは,Megatron-LMやTurning-NLGといった大規模モデルのトレーニングにおいて,複雑なハイブリッドモデル並列性よりも優れる。
論文 参考訳(メタデータ) (2020-08-26T07:24:34Z) - The Case for Strong Scaling in Deep Learning: Training Large 3D CNNs
with Hybrid Parallelism [3.4377970608678314]
大規模3次元畳み込みニューラルネットワークを学習するためのスケーラブルなハイブリッド並列アルゴリズムを提案する。
提案したトレーニングアルゴリズムを,CosmoFlowと3D U-Netの2つの挑戦的な3D CNNを用いて評価した。
論文 参考訳(メタデータ) (2020-07-25T05:06:06Z) - Large-Scale Gradient-Free Deep Learning with Recursive Local
Representation Alignment [84.57874289554839]
大規模データセット上でディープニューラルネットワークをトレーニングするには、重要なハードウェアリソースが必要である。
これらのネットワークをトレーニングするためのワークホースであるバックプロパゲーションは、本質的に並列化が難しいシーケンシャルなプロセスである。
本稿では、深層ネットワークのトレーニングに使用できるバックプロップに代わる、神経生物学的に有望な代替手段を提案する。
論文 参考訳(メタデータ) (2020-02-10T16:20:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。