論文の概要: Adversarial Defenses via Vector Quantization
- arxiv url: http://arxiv.org/abs/2305.13651v2
- Date: Wed, 09 Jul 2025 23:51:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-11 16:40:15.083835
- Title: Adversarial Defenses via Vector Quantization
- Title(参考訳): ベクトル量子化による敵防御
- Authors: Zhiyi Dong, Yongyi Mao,
- Abstract要約: アドリアックは、コンピュータビジョンにおける現代のディープニューラルネットワークの堅牢性に重大な課題をもたらす。
本稿では,ベクトル量子化器をプリプロセッサとして使用する,前処理に基づくディフェンスのための新しいフレームワークを提案する。
ベクトル量子化に基づくディフェンスは、確実な堅牢な精度を示し、pRDとswRDは最先端の性能を示す。
- 参考スコア(独自算出の注目度): 27.41991113731646
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adversarial attacks pose significant challenges to the robustness of modern deep neural networks in computer vision, and defending these networks against adversarial attacks has attracted intense research efforts. Among various defense strategies, preprocessing-based defenses are practically appealing since there is no need to train the network under protection. However, such approaches typically do not achieve comparable robustness as other methods such as adversarial training. In this paper, we propose a novel framework for preprocessing-based defenses, where a vector quantizer is used as a preprocessor. This framework, inspired by and extended from Randomized Discretization (RandDisc), is theoretically principled by rate-distortion theory: indeed, RandDisc may be viewed as a scalar quantizer, and rate-distortion theory suggests that such quantization schemes are inferior to vector quantization. In our framework, the preprocessing vector quantizer treats the input image as a collection of patches and finds a set of representative patches based on the patch distributions; each original patch is then modified according to the representative patches close to it. We present two lightweight defenses in this framework, referred to as patched RandDisc (pRD) and sliding-window RandDisc (swRD), where the patches are disjoint in the former and overlapping in the latter. We show that vector-quantization-based defenses have certifiable robust accuracy and that pRD and swRD demonstrate state-of-the-art performances, surpassing RandDisc by a large margin. Notably, the proposed defenses possess the obfuscated gradients property. Our experiments however show that pRD and swRD remain effective under the STE and EOT attacks, which are designed specifically for defenses with gradient obfuscation. ...
- Abstract(参考訳): 敵の攻撃は、コンピュータビジョンにおける現代のディープニューラルネットワークの堅牢性に大きな課題をもたらし、敵の攻撃からこれらのネットワークを守ることは、激しい研究努力を惹きつけた。
様々な防衛戦略の中で、ネットワークを保護下で訓練する必要がないため、前処理ベースの防衛は事実上魅力的である。
しかし、そのようなアプローチは、通常、敵の訓練のような他の方法と同等の堅牢性は達成しない。
本稿では,ベクトル量子化器をプリプロセッサとして使用する,前処理に基づくディフェンスのための新しいフレームワークを提案する。
このフレームワークはランダム化離散化(RandDisc)にインスパイアされ拡張され、理論上は速度歪み理論(RandDisc)によって導かれる:実際、RandDiscはスカラー量子化器と見なすことができ、レート歪み理論はそのような量子化スキームがベクトル量子化よりも劣っていることを示唆している。
本フレームワークでは,前処理ベクトル量子化器が入力画像をパッチの集合として扱い,パッチ分布に基づく代表パッチの集合を見つけ,その近傍の代表パッチに従って各元のパッチを修正する。
このフレームワークでは、パッチ付きRandDisc (pRD) とスライディングウインドウRandDisc (swRD) と呼ばれる2つの軽量ディフェンスを提示する。
ベクトル量子化に基づくディフェンスは確固たる精度を証明でき、pRDとswRDは最先端の性能を示し、RandDiscをはるかに上回っている。
特に、提案された防御は難解な勾配特性を有する。
しかし,本実験は,STEおよびEOT攻撃下でのpRDおよびswRDの有効性を実証した。
はぁ...。
関連論文リスト
- MISLEADER: Defending against Model Extraction with Ensembles of Distilled Models [56.09354775405601]
モデル抽出攻撃は、クエリアクセスを通じてブラックボックスモデルの機能を複製することを目的としている。
既存のディフェンスでは、アタッカークエリにはオフ・オブ・ディストリビューション(OOD)サンプルがあることを前提としており、不審な入力を検出し破壊することができる。
OOD仮定に依存しない新しい防衛戦略であるMISLEADERを提案する。
論文 参考訳(メタデータ) (2025-06-03T01:37:09Z) - Breaking the Limits of Quantization-Aware Defenses: QADT-R for Robustness Against Patch-Based Adversarial Attacks in QNNs [3.962831477787584]
量子ニューラルネットワーク(QNN)は、モデルサイズと計算コストを削減するための有望なソリューションとして登場した。
本研究は, 量子化モデルにおいて, 逆パッチは高い転送性を有することを示す。
本稿では,QADT-R(Quantization-Aware Defense Training with Randomization)を提案する。
論文 参考訳(メタデータ) (2025-03-10T08:43:36Z) - EdgeShield: A Universal and Efficient Edge Computing Framework for Robust AI [8.688432179052441]
敵攻撃の普遍的かつ効率的な検出を可能にするエッジフレームワークの設計を提案する。
このフレームワークは、注意に基づく敵検出手法と、軽量な検出ネットワークの形成を含む。
その結果、97.43%のFスコアが達成できることが示され、このフレームワークが敵の攻撃を検出する能力を示している。
論文 参考訳(メタデータ) (2024-08-08T02:57:55Z) - AdvQDet: Detecting Query-Based Adversarial Attacks with Adversarial Contrastive Prompt Tuning [93.77763753231338]
CLIP画像エンコーダを微調整し、2つの中間対向クエリに対して同様の埋め込みを抽出するために、ACPT(Adversarial Contrastive Prompt Tuning)を提案する。
我々は,ACPTが7つの最先端クエリベースの攻撃を検出できることを示す。
また,ACPTは3種類のアダプティブアタックに対して堅牢であることを示す。
論文 参考訳(メタデータ) (2024-08-04T09:53:50Z) - Meta Invariance Defense Towards Generalizable Robustness to Unknown Adversarial Attacks [62.036798488144306]
現在の防衛は主に既知の攻撃に焦点を当てているが、未知の攻撃に対する敵意の強固さは見過ごされている。
メタ不変防衛(Meta Invariance Defense, MID)と呼ばれる攻撃非依存の防御手法を提案する。
MIDは高レベルの画像分類と低レベルの頑健な画像再生における攻撃抑制において,知覚不能な逆方向の摂動に対して同時に頑健性を実現する。
論文 参考訳(メタデータ) (2024-04-04T10:10:38Z) - PuriDefense: Randomized Local Implicit Adversarial Purification for Defending Black-box Query-based Attacks [17.613736258543096]
ブラックボックスクエリベースの攻撃は機械学習・アズ・ア・サービス(ML)システムに脅威を与える。
低レベルの推論コストで軽量な浄化モデルのアンサンブルでランダムなパッチワイズ処理を施した効率的な防御機構であるPuriDefenseを提案する。
我々の理論的分析は、ランダム性を浄化に組み込むことで、クエリベースの攻撃の収束を遅くすることを示唆している。
論文 参考訳(メタデータ) (2024-01-19T09:54:23Z) - BadCLIP: Dual-Embedding Guided Backdoor Attack on Multimodal Contrastive
Learning [85.2564206440109]
本報告では,防衛後においてもバックドア攻撃が有効であり続けるという現実的なシナリオにおける脅威を明らかにする。
バックドア検出や細調整防御のモデル化に抵抗性のあるemphtoolnsアタックを導入する。
論文 参考訳(メタデータ) (2023-11-20T02:21:49Z) - Language Guided Adversarial Purification [3.9931474959554496]
生成モデルを用いた対向浄化は、強い対向防御性能を示す。
新しいフレームワーク、Language Guided Adversarial Purification (LGAP)は、事前訓練された拡散モデルとキャプションジェネレータを利用する。
論文 参考訳(メタデータ) (2023-09-19T06:17:18Z) - Enhancing the Antidote: Improved Pointwise Certifications against Poisoning Attacks [30.42301446202426]
毒殺攻撃は、トレーニングコーパスに小さな変更を加えることで、モデル行動に不当に影響を及ぼす可能性がある。
限られた数のトレーニングサンプルを修正した敵攻撃に対して,サンプルの堅牢性を保証することを可能とする。
論文 参考訳(メタデータ) (2023-08-15T03:46:41Z) - Guidance Through Surrogate: Towards a Generic Diagnostic Attack [101.36906370355435]
我々は、攻撃最適化中に局所最小限を避けるための誘導機構を開発し、G-PGAと呼ばれる新たな攻撃に繋がる。
修正された攻撃では、ランダムに再起動したり、多数の攻撃を繰り返したり、最適なステップサイズを検索したりする必要がありません。
効果的な攻撃以上に、G-PGAは敵防御における勾配マスキングによる解離性堅牢性を明らかにするための診断ツールとして用いられる。
論文 参考訳(メタデータ) (2022-12-30T18:45:23Z) - Scale-Invariant Adversarial Attack for Evaluating and Enhancing
Adversarial Defenses [22.531976474053057]
プロジェクテッド・グラディエント・Descent (PGD) 攻撃は最も成功した敵攻撃の1つであることが示されている。
我々は, 対向層の特徴とソフトマックス層の重みの角度を利用して, 対向層の生成を誘導するスケール不変逆襲 (SI-PGD) を提案する。
論文 参考訳(メタデータ) (2022-01-29T08:40:53Z) - Guardian of the Ensembles: Introducing Pairwise Adversarially Robust Loss for Resisting Adversarial Attacks in DNN Ensembles [11.058367494534123]
攻撃は移動可能性に依存する。
最近のアンサンブル法は、AEがアンサンブル内の複数の分類器を誤解させる可能性が低いことを示している。
本稿では,Pairwise Adversariversaally Robust Loss (PARL) を用いた新たなアンサンブルトレーニングを提案する。
論文 参考訳(メタデータ) (2021-12-09T14:26:13Z) - Towards A Conceptually Simple Defensive Approach for Few-shot
classifiers Against Adversarial Support Samples [107.38834819682315]
本研究は,数発の分類器を敵攻撃から守るための概念的簡便なアプローチについて検討する。
本稿では,自己相似性とフィルタリングの概念を用いた簡易な攻撃非依存検出法を提案する。
ミニイメージネット(MI)とCUBデータセットの攻撃検出性能は良好である。
論文 参考訳(メタデータ) (2021-10-24T05:46:03Z) - Searching for an Effective Defender: Benchmarking Defense against
Adversarial Word Substitution [83.84968082791444]
ディープニューラルネットワークは、意図的に構築された敵の例に対して脆弱である。
ニューラルNLPモデルに対する敵対的単語置換攻撃を防御する様々な方法が提案されている。
論文 参考訳(メタデータ) (2021-08-29T08:11:36Z) - Discriminator-Free Generative Adversarial Attack [87.71852388383242]
生成的ベースの敵攻撃は、この制限を取り除くことができる。
ASymmetric Saliency-based Auto-Encoder (SSAE) は摂動を生成する。
SSAEが生成した敵の例は、広く使われているモデルを崩壊させるだけでなく、優れた視覚的品質を実現する。
論文 参考訳(メタデータ) (2021-07-20T01:55:21Z) - Guided Adversarial Attack for Evaluating and Enhancing Adversarial
Defenses [59.58128343334556]
我々は、より適切な勾配方向を見つけ、攻撃効果を高め、より効率的な対人訓練をもたらす標準損失に緩和項を導入する。
本稿では, クリーン画像の関数マッピングを用いて, 敵生成を誘導するGAMA ( Guided Adversarial Margin Attack) を提案する。
また,一段防衛における最先端性能を実現するためのGAT ( Guided Adversarial Training) を提案する。
論文 参考訳(メタデータ) (2020-11-30T16:39:39Z) - MAD-VAE: Manifold Awareness Defense Variational Autoencoder [0.0]
本稿では,防衛モデルの堅牢性を改善するためのいくつかの手法を紹介する。
MNISTデータセットに関する広範な実験により,本アルゴリズムの有効性を実証した。
また,既存の逆潜時空間攻撃の適用可能性についても論じる。
論文 参考訳(メタデータ) (2020-10-31T09:04:25Z) - FADER: Fast Adversarial Example Rejection [19.305796826768425]
近年の防御は, 異なる層表現における正統な訓練試料からの異常な偏差を検出することにより, 対向的堅牢性を向上させることが示されている。
本稿では,検出に基づく手法を高速化する新しい手法であるFADERを紹介する。
実験では,MNISTデータセットの解析値と比較すると,最大73倍の試作機,CIFAR10の最大50倍の試作機について概説した。
論文 参考訳(メタデータ) (2020-10-18T22:00:11Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
敵対的な例は、ディープニューラルネットワーク(DNN)ベースの視覚システムにおいて破滅的な誤りを引き起こす可能性がある。
本稿では,入力空間における自己教師型対向学習機構を提案する。
これは、反逆攻撃に対する強力な堅牢性を提供する。
論文 参考訳(メタデータ) (2020-06-08T20:42:39Z) - Reliable evaluation of adversarial robustness with an ensemble of
diverse parameter-free attacks [65.20660287833537]
本稿では,最適段差の大きさと目的関数の問題による障害を克服するPGD攻撃の2つの拡張を提案する。
そして、我々の新しい攻撃と2つの補完的な既存の攻撃を組み合わせることで、パラメータフリーで、計算に手頃な価格で、ユーザに依存しない攻撃のアンサンブルを形成し、敵の堅牢性をテストする。
論文 参考訳(メタデータ) (2020-03-03T18:15:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。