論文の概要: EdgeShield: A Universal and Efficient Edge Computing Framework for Robust AI
- arxiv url: http://arxiv.org/abs/2408.04181v1
- Date: Thu, 8 Aug 2024 02:57:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-09 16:50:38.485811
- Title: EdgeShield: A Universal and Efficient Edge Computing Framework for Robust AI
- Title(参考訳): EdgeShield:ロバストAIのための汎用的で効率的なエッジコンピューティングフレームワーク
- Authors: Duo Zhong, Bojing Li, Xiang Chen, Chenchen Liu,
- Abstract要約: 敵攻撃の普遍的かつ効率的な検出を可能にするエッジフレームワークの設計を提案する。
このフレームワークは、注意に基づく敵検出手法と、軽量な検出ネットワークの形成を含む。
その結果、97.43%のFスコアが達成できることが示され、このフレームワークが敵の攻撃を検出する能力を示している。
- 参考スコア(独自算出の注目度): 8.688432179052441
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increasing prevalence of adversarial attacks on Artificial Intelligence (AI) systems has created a need for innovative security measures. However, the current methods of defending against these attacks often come with a high computing cost and require back-end processing, making real-time defense challenging. Fortunately, there have been remarkable advancements in edge-computing, which make it easier to deploy neural networks on edge devices. Building upon these advancements, we propose an edge framework design to enable universal and efficient detection of adversarial attacks. This framework incorporates an attention-based adversarial detection methodology and a lightweight detection network formation, making it suitable for a wide range of neural networks and can be deployed on edge devices. To assess the effectiveness of our proposed framework, we conducted evaluations on five neural networks. The results indicate an impressive 97.43% F-score can be achieved, demonstrating the framework's proficiency in detecting adversarial attacks. Moreover, our proposed framework also exhibits significantly reduced computing complexity and cost in comparison to previous detection methods. This aspect is particularly beneficial as it ensures that the defense mechanism can be efficiently implemented in real-time on-edge devices.
- Abstract(参考訳): 人工知能(AI)システムに対する敵対的攻撃の増加は、革新的なセキュリティ対策の必要性を生み出している。
しかしながら、これらの攻撃に対する現在の防御方法は、しばしば高い計算コストを伴い、バックエンド処理を必要とするため、リアルタイムの防御は困難である。
幸運なことに、エッジコンピューティングの顕著な進歩により、エッジデバイスにニューラルネットワークをデプロイしやすくなっている。
これらの進歩に基づいて,敵攻撃の普遍的かつ効率的な検出を可能にするエッジフレームワークの設計を提案する。
このフレームワークには、注意に基づく敵検出手法と、軽量な検出ネットワークの形成が含まれており、幅広いニューラルネットワークに適合し、エッジデバイスにデプロイすることができる。
提案手法の有効性を評価するため,5つのニューラルネットワークを用いて評価を行った。
その結果、97.43%のFスコアが達成できることが示され、このフレームワークが敵の攻撃を検出する能力を示している。
さらに,提案手法では,従来の検出手法と比較して計算量やコストが大幅に削減されている。
この側面は、リアルタイムのオンエッジデバイスで防御機構を効率的に実装できることを保証するため、特に有益である。
関連論文リスト
- A Hybrid Training-time and Run-time Defense Against Adversarial Attacks in Modulation Classification [35.061430235135155]
機械学習に基づく無線信号(変調)分類を敵攻撃から保護するための訓練時間と実行時間の両方の防御技術に基づく防御機構。
ホワイトボックスのシナリオと実際のデータセットを考慮すると、提案手法が既存の最先端技術より優れていることを示す。
論文 参考訳(メタデータ) (2024-07-09T12:28:38Z) - Improving the Robustness of Object Detection and Classification AI models against Adversarial Patch Attacks [2.963101656293054]
我々は攻撃手法を解析し、堅牢な防御手法を提案する。
我々は,物体形状,テクスチャ,位置を利用する逆パッチ攻撃を用いて,モデル信頼度を20%以上下げることに成功した。
敵攻撃にも拘わらず,本手法はモデルレジリエンスを著しく向上させ,高精度かつ信頼性の高いローカライゼーションを実現している。
論文 参考訳(メタデータ) (2024-03-04T13:32:48Z) - Attention-Based Real-Time Defenses for Physical Adversarial Attacks in
Vision Applications [58.06882713631082]
ディープニューラルネットワークはコンピュータビジョンタスクにおいて優れたパフォーマンスを示すが、現実の敵攻撃に対する脆弱性は深刻なセキュリティ上の懸念を引き起こす。
本稿では、敵チャネルの注意力を利用して、浅いネットワーク層における悪意のある物体を素早く識別・追跡する、効果的な注意に基づく防御機構を提案する。
また、効率的な多フレーム防御フレームワークを導入し、防御性能と計算コストの両方を評価することを目的とした広範な実験を通じて、その有効性を検証した。
論文 参考訳(メタデータ) (2023-11-19T00:47:17Z) - Adversarial Attacks and Defenses in Machine Learning-Powered Networks: A
Contemporary Survey [114.17568992164303]
機械学習とディープニューラルネットワークにおけるアドリアックと防御が注目されている。
本調査は、敵攻撃・防衛技術分野における最近の進歩を包括的に概観する。
検索ベース、意思決定ベース、ドロップベース、物理世界攻撃など、新たな攻撃方法も検討されている。
論文 参考訳(メタデータ) (2023-03-11T04:19:31Z) - Towards Adversarial Realism and Robust Learning for IoT Intrusion
Detection and Classification [0.0]
IoT(Internet of Things)は、重大なセキュリティ上の課題に直面している。
敵の攻撃による脅威の増大は、信頼できる防衛戦略の必要性を回復させる。
本研究は、敵のサイバー攻撃事例が現実的であるために必要な制約の種類について述べる。
論文 参考訳(メタデータ) (2023-01-30T18:00:28Z) - RobustSense: Defending Adversarial Attack for Secure Device-Free Human
Activity Recognition [37.387265457439476]
我々は、共通の敵攻撃を防御する新しい学習フレームワーク、RobustSenseを提案する。
本手法は,無線による人間行動認識と人物識別システムに有効である。
論文 参考訳(メタデータ) (2022-04-04T15:06:03Z) - Segmentation Fault: A Cheap Defense Against Adversarial Machine Learning [0.0]
最近発表されたディープニューラルネットワーク(DNN)に対する攻撃は、重要なシステムでこの技術を使用する際のセキュリティリスクを評価する方法論とツールの重要性を強調している。
本稿では,ディープニューラルネットワーク分類器,特に畳み込みを防御する新しい手法を提案する。
私たちの防衛費は、検出精度の面では安いが、消費電力が少ないという意味では安い。
論文 参考訳(メタデータ) (2021-08-31T04:56:58Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
本稿では,ベイズ最適化手法を用いた効果的な異常検出フレームワークを提案する。
ISCX 2012データセットを用いて検討したアルゴリズムの性能を評価する。
実験結果から, 精度, 精度, 低コストアラームレート, リコールの観点から, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-05T19:29:35Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
敵対的な例は、ディープニューラルネットワーク(DNN)ベースの視覚システムにおいて破滅的な誤りを引き起こす可能性がある。
本稿では,入力空間における自己教師型対向学習機構を提案する。
これは、反逆攻撃に対する強力な堅牢性を提供する。
論文 参考訳(メタデータ) (2020-06-08T20:42:39Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
人工知能(AI)の最近の進歩は、サイバーセキュリティのための行動分析(UEBA)に新たな能力をもたらした。
本稿では、検出プロセスを改善し、人間の専門知識を効果的に活用することにより、この攻撃を効果的に軽減するソリューションを提案する。
論文 参考訳(メタデータ) (2020-01-13T13:54:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。