論文の概要: Learning from Mistakes via Interactive Study Assistant for Large
Language Models
- arxiv url: http://arxiv.org/abs/2305.13829v2
- Date: Sun, 8 Oct 2023 23:00:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-13 12:24:28.838637
- Title: Learning from Mistakes via Interactive Study Assistant for Large
Language Models
- Title(参考訳): 大規模言語モデルのための対話型学習アシスタントによる誤りから学ぶ
- Authors: Danqing Wang, Lei Li
- Abstract要約: 大規模言語モデル(LLM)は、フィードバックに基づいて生成を洗練できる有望な能力を示している。
誤りを学習し,訂正するためのLarge LAnguage Model (SALAM)を提案する。
- 参考スコア(独自算出の注目度): 17.318591492264023
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have shown promising capabilities to refine
their generation based on feedback. However, LLM refinement based on feedback
is not always robust and may produce incorrect answers. In this paper, we
propose Large LAnguage Model (SALAM) to learn and correct from their mistakes.
Our method introduces a study assistant agent to analyze mistakes and generate
improvement guidelines from the main LLM. During inference, it identifies
common misunderstandings based on the mistake collections and provides
guidelines for LLMs to help them avoid similar mistakes. We further finetune
the study assistant using imitation learning with successful feedback
interaction. Our experiments on two challenging frameworks (BBH and BBQ)
demonstrate that SALAM outperforms baselines by a margin of up to 10.7 in
accuracy.
- Abstract(参考訳): 大規模言語モデル(LLM)は、フィードバックに基づいて生成を洗練できる有望な能力を示している。
しかし、フィードバックに基づくLLMの改良は必ずしも堅牢ではなく、誤った回答をもたらす可能性がある。
本稿では,その誤りを学習し,訂正するためのLarge Language Model (SALAM)を提案する。
本手法では, 誤りを分析し, 主LLMから改善ガイドラインを生成するための学習支援エージェントを提案する。
推論中に、ミスコレクションに基づいた一般的な誤解を特定し、LLMが同様のミスを避けるのに役立つガイドラインを提供する。
さらに,フィードバックインタラクションを成功させた模倣学習を用いて,学習アシスタントを微調整する。
2つの挑戦的フレームワーク(BBHとBBQ)に関する実験により、SALAMは最大10.7の精度でベースラインを上回ります。
関連論文リスト
- Satori: Reinforcement Learning with Chain-of-Action-Thought Enhances LLM Reasoning via Autoregressive Search [57.28671084993782]
大規模言語モデル(LLM)は、様々な領域にまたがる顕著な推論能力を示している。
近年の研究では、テスト時間計算の増加はLLMの推論能力を高めることが示されている。
そこで我々は,1)COAT推論形式を内部化するための小規模な形式調整段階,2)強化学習を活用した大規模自己改善段階を提案する。
論文 参考訳(メタデータ) (2025-02-04T17:26:58Z) - Supporting Self-Reflection at Scale with Large Language Models: Insights from Randomized Field Experiments in Classrooms [7.550701021850185]
本研究では,大規模言語モデル (LLMs) が学生の反省会後リフレクションに役立てる可能性について検討する。
大学コンピュータサイエンス科でランダムフィールド実験を2回行った。
論文 参考訳(メタデータ) (2024-06-01T02:41:59Z) - Can LLMs Solve longer Math Word Problems Better? [47.227621867242]
数学語問題(MWP)は、大規模言語モデル(LLM)の能力を評価する上で重要な役割を果たす。
より長い文脈が数学的推論に与える影響は未解明のままである。
本研究は文脈長一般化可能性(CoLeG)の研究の先駆者である。
論文 参考訳(メタデータ) (2024-05-23T17:13:50Z) - Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing [56.75702900542643]
大規模言語モデルの自己改善のためのAlphaLLMを紹介する。
モンテカルロ木探索(MCTS)とLLMを統合し、自己改善ループを確立する。
実験の結果,AlphaLLM は付加アノテーションを使わずに LLM の性能を大幅に向上することがわかった。
論文 参考訳(メタデータ) (2024-04-18T15:21:34Z) - Small Models, Big Insights: Leveraging Slim Proxy Models To Decide When and What to Retrieve for LLMs [60.40396361115776]
本稿では,スリムプロキシモデルを用いた大規模言語モデル (LLM) における知識不足を検知する新しい協調手法であるSlimPLMを提案する。
パラメータがはるかに少ないプロキシモデルを採用し、回答を回答としています。
ヒューリスティックな回答は、LLM内の既知の未知の知識と同様に、ユーザの質問に答えるために必要な知識を予測するのに使用される。
論文 参考訳(メタデータ) (2024-02-19T11:11:08Z) - Rethinking the Roles of Large Language Models in Chinese Grammatical
Error Correction [62.409807640887834]
中国語の文法的誤り訂正(CGEC)は、入力文中のすべての文法的誤りを修正することを目的としている。
CGECの修正器としてのLLMの性能は、課題の焦点が難しいため不満足なままである。
CGECタスクにおけるLCMの役割を再考し、CGECでよりよく活用し、探索できるようにした。
論文 参考訳(メタデータ) (2024-02-18T01:40:34Z) - Mutual Enhancement of Large Language and Reinforcement Learning Models
through Bi-Directional Feedback Mechanisms: A Case Study [1.3597551064547502]
我々は,大規模言語モデル(LLM)と強化学習(RL)モデルの課題に対処するために,教師による学習フレームワークを採用している。
この枠組みの中で、LLMは教師として、RLモデルは学生として機能する。
本手法の有効性を評価するために,この問題に対処し,実証実験を行うための実用的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-01-12T14:35:57Z) - Knowing What LLMs DO NOT Know: A Simple Yet Effective Self-Detection Method [36.24876571343749]
大規模言語モデル(LLM)は自然言語処理(NLP)タスクにおいて大きな可能性を示している。
近年の文献では、LLMは断続的に非実効応答を生成する。
本研究では,LLM が知らない質問が非現実的な結果を生成する傾向にあることを検知する新たな自己検出手法を提案する。
論文 参考訳(メタデータ) (2023-10-27T06:22:14Z) - Impact of Guidance and Interaction Strategies for LLM Use on Learner Performance and Perception [19.335003380399527]
大規模言語モデル(LLM)は、その教育的有用性を探求する研究の増加とともに、有望な道を提供する。
本研究は,LLM支援学習環境の形成において,教師が果たす役割を強調した。
論文 参考訳(メタデータ) (2023-10-13T01:21:52Z) - Survey on Factuality in Large Language Models: Knowledge, Retrieval and
Domain-Specificity [61.54815512469125]
本調査は,大規模言語モデル(LLM)における事実性の重要課題に対処する。
LLMが様々な領域にまたがる応用を見出すにつれ、その出力の信頼性と正確性は重要となる。
論文 参考訳(メタデータ) (2023-10-11T14:18:03Z) - On Learning to Summarize with Large Language Models as References [101.79795027550959]
大型言語モデル (LLM) は、一般的な要約データセットにおける元の参照要約よりも人間のアノテーションに好まれる。
より小さなテキスト要約モデルに対するLLM-as-reference学習設定について検討し,その性能が大幅に向上するかどうかを検討する。
論文 参考訳(メタデータ) (2023-05-23T16:56:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。