Improving Language Models via Plug-and-Play Retrieval Feedback
- URL: http://arxiv.org/abs/2305.14002v1
- Date: Tue, 23 May 2023 12:29:44 GMT
- Title: Improving Language Models via Plug-and-Play Retrieval Feedback
- Authors: Wenhao Yu, Zhihan Zhang, Zhenwen Liang, Meng Jiang, Ashish Sabharwal
- Abstract summary: Large language models (LLMs) exhibit remarkable performance across various NLP tasks.
They often generate incorrect or hallucinated information, which hinders their practical applicability in real-world scenarios.
We introduce ReFeed, a novel pipeline designed to enhance LLMs by providing automatic retrieval feedback in a plug-and-play framework.
- Score: 42.786225163763376
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) exhibit remarkable performance across various
NLP tasks. However, they often generate incorrect or hallucinated information,
which hinders their practical applicability in real-world scenarios. Human
feedback has been shown to effectively enhance the factuality and quality of
generated content, addressing some of these limitations. However, this approach
is resource-intensive, involving manual input and supervision, which can be
time-consuming and expensive. Moreover, it cannot be provided during inference,
further limiting its practical utility in dynamic and interactive applications.
In this paper, we introduce ReFeed, a novel pipeline designed to enhance LLMs
by providing automatic retrieval feedback in a plug-and-play framework without
the need for expensive fine-tuning. ReFeed first generates initial outputs,
then utilizes a retrieval model to acquire relevant information from large
document collections, and finally incorporates the retrieved information into
the in-context demonstration for output refinement, thereby addressing the
limitations of LLMs in a more efficient and cost-effective manner. Experiments
on four knowledge-intensive benchmark datasets demonstrate our proposed ReFeed
could improve over +6.0% under zero-shot setting and +2.5% under few-shot
setting, compared to baselines without using retrieval feedback.
Related papers
- VERA: Validation and Enhancement for Retrieval Augmented systems [0.0]
We propose textbfVERA (textbfValidation and textbfEnhancement for textbfRetrieval textbfAugmented systems), a system designed to evaluate and enhance the retrieved context before response generation.
VERA employs an evaluator-cum-enhancer LLM that first checks if external retrieval is necessary, evaluates the relevance and redundancy of the retrieved context, and refines it to eliminate non-essential information.
arXiv Detail & Related papers (2024-09-18T16:10:47Z) - V-RECS, a Low-Cost LLM4VIS Recommender with Explanations, Captioning and Suggestions [3.3235895997314726]
We present V-RECS, the first Visual Recommender augmented with explanations(E), captioning(C), and suggestions(S) for further data exploration.
V-RECS' visualization narratives facilitate both response verification and data exploration by non-expert users.
arXiv Detail & Related papers (2024-06-21T15:50:10Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETAL revolutionizes the training process by requiring only 0.5% of the total parameters, achieved through a unique mode approximation technique.
Our experiments reveal that PETAL not only outperforms current state-of-the-art methods in most scenarios but also surpasses full fine-tuning models in effectiveness.
arXiv Detail & Related papers (2023-12-16T17:13:08Z) - ReEval: Automatic Hallucination Evaluation for Retrieval-Augmented Large Language Models via Transferable Adversarial Attacks [91.55895047448249]
This paper presents ReEval, an LLM-based framework using prompt chaining to perturb the original evidence for generating new test cases.
We implement ReEval using ChatGPT and evaluate the resulting variants of two popular open-domain QA datasets.
Our generated data is human-readable and useful to trigger hallucination in large language models.
arXiv Detail & Related papers (2023-10-19T06:37:32Z) - Reflection-Tuning: Data Recycling Improves LLM Instruction-Tuning [79.32236399694077]
Low-quality data in the training set are usually detrimental to instruction tuning.
We propose a novel method, termed "reflection-tuning"
This approach utilizes an oracle LLM to recycle the original training data by introspecting and enhancing the quality of instructions and responses in the data.
arXiv Detail & Related papers (2023-10-18T05:13:47Z) - Can LLMs Augment Low-Resource Reading Comprehension Datasets? Opportunities and Challenges [3.130575840003799]
GPT-4 can be used to augment existing reading comprehension datasets.
This work serves to be the first analysis of LLMs as synthetic data augmenters for QA systems.
arXiv Detail & Related papers (2023-09-21T18:48:02Z) - ReLLa: Retrieval-enhanced Large Language Models for Lifelong Sequential Behavior Comprehension in Recommendation [43.270424225285105]
We focus on adapting and empowering a pure large language model for zero-shot and few-shot recommendation tasks.
We propose Retrieval-enhanced Large Language models (ReLLa) for recommendation tasks in both zero-shot and few-shot settings.
arXiv Detail & Related papers (2023-08-22T02:25:04Z) - OverPrompt: Enhancing ChatGPT through Efficient In-Context Learning [49.38867353135258]
We propose OverPrompt, leveraging the in-context learning capability of LLMs to handle multiple task inputs.
Our experiments show that OverPrompt can achieve cost-efficient zero-shot classification without causing significant detriment to task performance.
arXiv Detail & Related papers (2023-05-24T10:08:04Z) - ReWOO: Decoupling Reasoning from Observations for Efficient Augmented
Language Models [32.95155349925248]
We propose a modular paradigm ReWOO that detaches the reasoning process from external observations, thus significantly reducing token consumption.
We show that ReWOO achieves 5x token efficiency and 4% accuracy improvement on HotpotQA, a multi-step reasoning benchmark.
Our illustrative work offloads reasoning ability from 175B GPT3.5 into 7B LLaMA, demonstrating the significant potential for truly efficient and scalable ALM systems.
arXiv Detail & Related papers (2023-05-23T00:16:48Z) - Efficient Nearest Neighbor Language Models [114.40866461741795]
Non-parametric neural language models (NLMs) learn predictive distributions of text utilizing an external datastore.
We show how to achieve up to a 6x speed-up in inference speed while retaining comparable performance.
arXiv Detail & Related papers (2021-09-09T12:32:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.