A multimodal method based on cross-attention and convolution for
postoperative infection diagnosis
- URL: http://arxiv.org/abs/2305.14142v1
- Date: Tue, 23 May 2023 15:08:56 GMT
- Title: A multimodal method based on cross-attention and convolution for
postoperative infection diagnosis
- Authors: Xianjie Liu, Hongwei Shi
- Abstract summary: Postoperative infection diagnosis is a common and serious complication that poses a high diagnostic challenge.
X-ray examination is an imaging examination for suspected PJI patients.
In this study, we proposed a self-supervised masked autoencoder pre-training strategy and a multimodal fusion diagnostic network MED-NVC.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Postoperative infection diagnosis is a common and serious complication that
generally poses a high diagnostic challenge. This study focuses on PJI, a type
of postoperative infection. X-ray examination is an imaging examination for
suspected PJI patients that can evaluate joint prostheses and adjacent tissues,
and detect the cause of pain. Laboratory examination data has high sensitivity
and specificity and has significant potential in PJI diagnosis. In this study,
we proposed a self-supervised masked autoencoder pre-training strategy and a
multimodal fusion diagnostic network MED-NVC, which effectively implements the
interaction between two modal features through the feature fusion network of
CrossAttention. We tested our proposed method on our collected PJI dataset and
evaluated its performance and feasibility through comparison and ablation
experiments. The results showed that our method achieved an ACC of 94.71% and
an AUC of 98.22%, which is better than the latest method and also reduces the
number of parameters. Our proposed method has the potential to provide
clinicians with a powerful tool for enhancing accuracy and efficiency.
Related papers
- MINDSETS: Multi-omics Integration with Neuroimaging for Dementia Subtyping and Effective Temporal Study [0.7751705157998379]
Alzheimer's disease (AD) and vascular dementia (VaD) are the two most prevalent dementia types.
This paper presents an innovative multi-omics approach to accurately differentiate AD from VaD, achieving a diagnostic accuracy of 89.25%.
arXiv Detail & Related papers (2024-11-06T10:13:28Z) - Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy [63.39037092484374]
This study focuses on the clinical evaluation of medical Synthetic Data Generation using Artificial Intelligence (AI) models.
The paper contributes by a) presenting a protocol for the systematic evaluation of synthetic images by medical experts and b) applying it to assess TIDE-II, a novel variational autoencoder-based model for high-resolution WCE image synthesis.
The results show that TIDE-II generates clinically relevant WCE images, helping to address data scarcity and enhance diagnostic tools.
arXiv Detail & Related papers (2024-10-31T19:48:50Z) - EndoOOD: Uncertainty-aware Out-of-distribution Detection in Capsule
Endoscopy Diagnosis [11.82953216903558]
Wireless capsule endoscopy (WCE) is a non-invasive diagnostic procedure that enables visualization of the gastrointestinal (GI) tract.
Deep learning-based methods have shown effectiveness in disease screening using WCE data.
Existing capsule endoscopy classification methods mostly rely on pre-defined categories.
arXiv Detail & Related papers (2024-02-18T06:54:51Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
This research introduces a novel multimodal method for classifying skin lesions, integrating smartphone-captured images with essential clinical and demographic information.
A distinctive aspect of this method is the integration of an auxiliary task focused on super-resolution image prediction.
The experimental evaluations have been conducted using the PAD-UFES20 dataset, applying various deep-learning architectures.
arXiv Detail & Related papers (2024-02-16T05:16:20Z) - Enabling Collaborative Clinical Diagnosis of Infectious Keratitis by
Integrating Expert Knowledge and Interpretable Data-driven Intelligence [28.144658552047975]
This study investigates the performance, interpretability, and clinical utility of knowledge-guided diagnosis model (KGDM) in the diagnosis of infectious keratitis (IK)
The diagnostic odds ratios (DOR) of the interpreted AI-based biomarkers are effective, ranging from 3.011 to 35.233.
The participants with collaboration achieved a performance exceeding that of both humans and AI.
arXiv Detail & Related papers (2024-01-14T02:10:54Z) - PHE-SICH-CT-IDS: A Benchmark CT Image Dataset for Evaluation Semantic
Segmentation, Object Detection and Radiomic Feature Extraction of
Perihematomal Edema in Spontaneous Intracerebral Hemorrhage [2.602118060856794]
Intracerebral hemorrhage is one of the diseases with the highest mortality and poorest prognosis worldwide.
This study establishes a publicly available CT dataset named PHE-SICH-CT-IDS for perihematomal edema in spontaneous intracerebral hemorrhage.
arXiv Detail & Related papers (2023-08-21T07:18:51Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
"Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image (MedAI 2021)" competitions.
We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic.
arXiv Detail & Related papers (2023-07-30T16:08:45Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - HGT: A Hierarchical GCN-Based Transformer for Multimodal Periprosthetic
Joint Infection Diagnosis Using CT Images and Text [0.0]
Prosthetic Joint Infection (PJI) is a prevalent and severe complication.
Currently, a unified diagnostic standard incorporating both computed tomography (CT) images and numerical text data for PJI remains unestablished.
This study introduces a diagnostic method, HGT, based on deep learning and multimodal techniques.
arXiv Detail & Related papers (2023-05-29T11:25:57Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
We combine radiomics of lung opacities and non-imaging features from demographic data, vital signs, and laboratory findings to predict need for intensive care unit admission.
Our methods may also be applied to other lung diseases including but not limited to community acquired pneumonia.
arXiv Detail & Related papers (2020-07-20T19:08:50Z) - Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent
Multi-View Representation Learning [48.05232274463484]
Recently, the outbreak of Coronavirus Disease 2019 (COVID-19) has spread rapidly across the world.
Due to the large number of affected patients and heavy labor for doctors, computer-aided diagnosis with machine learning algorithm is urgently needed.
In this study, we propose to conduct the diagnosis of COVID-19 with a series of features extracted from CT images.
arXiv Detail & Related papers (2020-05-06T15:19:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.