論文の概要: Amortized Variational Inference with Coverage Guarantees
- arxiv url: http://arxiv.org/abs/2305.14275v2
- Date: Mon, 16 Oct 2023 02:03:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-18 05:11:12.543481
- Title: Amortized Variational Inference with Coverage Guarantees
- Title(参考訳): カバレッジ保証付き不定形変分推論
- Authors: Yash Patel, Declan McNamara, Jackson Loper, Jeffrey Regier, Ambuj
Tewari
- Abstract要約: Amortized variational inference(英語版)は、新しい観測によって高速に計算できる後部近似を生成する。
コンフォーマル化補正ニューラル変分推論(CANVI)を提案する。
CANVIは各候補に基づいて共形予測器を構築し、予測効率と呼ばれる計量を用いて予測器を比較し、最も効率的な予測器を返す。
- 参考スコア(独自算出の注目度): 20.189430920135873
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Amortized variational inference produces a posterior approximation that can
be rapidly computed given any new observation. Unfortunately, there are few
guarantees about the quality of these approximate posteriors. We propose
Conformalized Amortized Neural Variational Inference (CANVI), a procedure that
is scalable, easily implemented, and provides guaranteed marginal coverage.
Given a collection of candidate amortized posterior approximators, CANVI
constructs conformalized predictors based on each candidate, compares the
predictors using a metric known as predictive efficiency, and returns the most
efficient predictor. CANVI ensures that the resulting predictor constructs
regions that contain the truth with a user-specified level of probability.
CANVI is agnostic to design decisions in formulating the candidate
approximators and only requires access to samples from the forward model,
permitting its use in likelihood-free settings. We prove lower bounds on the
predictive efficiency of the regions produced by CANVI and explore how the
quality of a posterior approximation relates to the predictive efficiency of
prediction regions based on that approximation. Finally, we demonstrate the
accurate calibration and high predictive efficiency of CANVI on a suite of
simulation-based inference benchmark tasks and an important scientific task:
analyzing galaxy emission spectra.
- Abstract(参考訳): amortized variational inference は後続近似を生じさせ、新しい観測から素早く計算できる。
残念ながら、これらの近似後部の品質に関する保証はほとんどない。
我々は,スケーラブルで実装が容易で,限界カバレッジが保証された,コンフォーマライズされたamortized neural variational inference (canvi)を提案する。
候補補正後近似器の集合が与えられた場合、CANVIは各候補に基づいて共形予測器を構築し、予測効率と呼ばれる計量を用いて予測器を比較し、最も効率的な予測器を返す。
CANVIは、結果の予測器が、ユーザが特定した確率レベルで真実を含む領域を構築することを保証する。
CANVIは、候補近似器の定式化における設計上の決定に非依存であり、フォワードモデルからのサンプルへのアクセスのみを必要とするため、可能性のない設定での使用が可能である。
我々は,CANVIが生成する領域の予測効率の低い境界を証明し,その近似に基づいて,後部近似の品質と予測領域の予測効率の関係について検討する。
最後に、シミュレーションベース推論ベンチマークの一連のタスクと重要な科学的タスクである銀河放出スペクトルの分析において、CANVIの正確な校正と高い予測効率を示す。
関連論文リスト
- Statistical Inference for Temporal Difference Learning with Linear Function Approximation [62.69448336714418]
時間差差(TD)学習は、おそらく政策評価に最も広く使用されるものであり、この目的の自然な枠組みとして機能する。
本稿では,Polyak-Ruppert平均化と線形関数近似によるTD学習の整合性について検討し,既存の結果よりも3つの重要な改善点を得た。
論文 参考訳(メタデータ) (2024-10-21T15:34:44Z) - Optimizing Probabilistic Conformal Prediction with Vectorized Non-Conformity Scores [6.059745771017814]
本研究では,まず非整合性スコアをランク付きサンプルでベクトル化し,次に同じランクのサンプルに対して定量値を変化させることで,予測値の形状を最適化することにより,効率を向上させる新しいフレームワークを提案する。
提案手法は,不連続かつ効率的な予測セットを生成しながら,有効なカバレッジを提供する。
論文 参考訳(メタデータ) (2024-10-17T16:37:03Z) - Bayesian Estimation and Tuning-Free Rank Detection for Probability Mass Function Tensors [17.640500920466984]
本稿では,関節のPMFを推定し,そのランクを観測データから自動的に推定する新しい枠組みを提案する。
我々は、様々なモデルパラメータの後方分布を近似するために、変分推論(VI)に基づく決定論的解を導出し、さらに、変分推論(SVI)を利用して、VVIベースのアプローチのスケーラブルバージョンを開発する。
合成データと実映画レコメンデーションデータの両方を含む実験は、推定精度、自動ランク検出、計算効率の点で、VVIおよびSVIベースの手法の利点を示している。
論文 参考訳(メタデータ) (2024-10-08T20:07:49Z) - Calibrated Probabilistic Forecasts for Arbitrary Sequences [58.54729945445505]
実際のデータストリームは、分散シフトやフィードバックループ、敵アクターによって予測不可能に変化する可能性がある。
データがどのように進化するかに関わらず、有効な不確実性推定を保証するための予測フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-27T21:46:42Z) - Probabilistic Scores of Classifiers, Calibration is not Enough [0.32985979395737786]
二項分類タスクでは、確率的予測の正確な表現が実世界の様々な応用に不可欠である。
本研究では,予測スコアと真の確率分布の一致を優先するアプローチを強調した。
その結果,従来の校正基準の限界が明らかとなり,重要な意思決定のための予測モデルの信頼性を損なう可能性が示唆された。
論文 参考訳(メタデータ) (2024-08-06T19:53:00Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
本研究では,共形手法の柔軟性と条件分布の推定を組み合わせ,予測セットを生成する手法を開発した。
我々の手法は、条件付きカバレッジの観点から既存の手法よりも一貫して優れています。
論文 参考訳(メタデータ) (2024-07-01T20:44:48Z) - Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
ニューラルモデルのトレーニング目的に直接キャリブレーション項を含めることを提案する。
古典的なキャリブレーション誤差の定式化を緩和することにより、エンドツーエンドのバックプロパゲーションを可能にする。
既存の計算パイプラインに直接適用でき、信頼性の高いブラックボックス後部推論が可能である。
論文 参考訳(メタデータ) (2023-10-20T10:20:45Z) - Efficient and Differentiable Conformal Prediction with General Function
Classes [96.74055810115456]
本稿では,複数の学習可能なパラメータに対する共形予測の一般化を提案する。
本研究は, クラス内において, ほぼ有効な人口被覆率, ほぼ最適効率を実現していることを示す。
実験の結果,提案アルゴリズムは有効な予測セットを学習し,効率を著しく向上できることがわかった。
論文 参考訳(メタデータ) (2022-02-22T18:37:23Z) - Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic
Regression [51.770998056563094]
PGBM(Probabilistic Gradient Boosting Machines)は、確率的予測を生成する手法である。
既存の最先端手法と比較してPGBMの利点を実証的に示す。
論文 参考訳(メタデータ) (2021-06-03T08:32:13Z) - Robust Validation: Confident Predictions Even When Distributions Shift [19.327409270934474]
本稿では,モデルが点予測ではなく,その予測に対して不確実な推定を行うような,頑健な予測推論の手順について述べる。
本稿では, トレーニング集団の周囲に$f$-divergence のボールを用いて, 任意のテスト分布に対して適切なカバレッジレベルを与える予測セットを生成する手法を提案する。
私たちの方法論の重要な構成要素は、将来のデータシフトの量を見積り、それに対する堅牢性を構築することです。
論文 参考訳(メタデータ) (2020-08-10T17:09:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。