Ties Matter: Meta-Evaluating Modern Metrics with Pairwise Accuracy and
Tie Calibration
- URL: http://arxiv.org/abs/2305.14324v2
- Date: Tue, 17 Oct 2023 16:33:33 GMT
- Title: Ties Matter: Meta-Evaluating Modern Metrics with Pairwise Accuracy and
Tie Calibration
- Authors: Daniel Deutsch and George Foster and Markus Freitag
- Abstract summary: Kendall's tau is frequently used to meta-evaluate machine translation (MT) evaluation metrics score individual translations.
We show that existing variants have weaknesses arising from their handling of ties, and in some situations can even be gamed.
We propose instead to meta-evaluate metrics with a version of pairwise accuracy that gives metrics credit for correctly predicting ties, and a tie calibration procedure that automatically introduces ties into metric scores.
- Score: 31.082944145354293
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Kendall's tau is frequently used to meta-evaluate how well machine
translation (MT) evaluation metrics score individual translations. Its focus on
pairwise score comparisons is intuitive but raises the question of how ties
should be handled, a gray area that has motivated different variants in the
literature. We demonstrate that, in settings like modern MT meta-evaluation,
existing variants have weaknesses arising from their handling of ties, and in
some situations can even be gamed. We propose instead to meta-evaluate metrics
with a version of pairwise accuracy that gives metrics credit for correctly
predicting ties, in combination with a tie calibration procedure that
automatically introduces ties into metric scores, enabling fair comparison
between metrics that do and do not predict ties. We argue and provide
experimental evidence that these modifications lead to fairer ranking-based
assessments of metric performance.
Related papers
- Beyond Correlation: Interpretable Evaluation of Machine Translation Metrics [46.71836180414362]
We introduce an interpretable evaluation framework for Machine Translation (MT) metrics.
Within this framework, we evaluate metrics in two scenarios that serve as proxies for the data filtering and translation re-ranking use cases.
We also raise concerns regarding the reliability of manually curated data following the Direct Assessments+Scalar Quality Metrics (DA+SQM) guidelines.
arXiv Detail & Related papers (2024-10-07T16:42:10Z) - Guardians of the Machine Translation Meta-Evaluation: Sentinel Metrics Fall In! [80.3129093617928]
Annually, at the Conference of Machine Translation (WMT), the Metrics Shared Task organizers conduct the meta-evaluation of Machine Translation (MT) metrics.
This work highlights two issues with the meta-evaluation framework currently employed in WMT, and assesses their impact on the metrics rankings.
We introduce the concept of sentinel metrics, which are designed explicitly to scrutinize the meta-evaluation process's accuracy, robustness, and fairness.
arXiv Detail & Related papers (2024-08-25T13:29:34Z) - MuLER: Detailed and Scalable Reference-based Evaluation [24.80921931416632]
We propose a novel methodology that transforms any reference-based evaluation metric for text generation into a fine-grained analysis tool.
Given a system and a metric, MuLER quantifies how much the chosen metric penalizes specific error types.
We perform experiments in both synthetic and naturalistic settings to support MuLER's validity and showcase its usability.
arXiv Detail & Related papers (2023-05-24T10:26:13Z) - Extrinsic Evaluation of Machine Translation Metrics [78.75776477562087]
It is unclear if automatic metrics are reliable at distinguishing good translations from bad translations at the sentence level.
We evaluate the segment-level performance of the most widely used MT metrics (chrF, COMET, BERTScore, etc.) on three downstream cross-lingual tasks.
Our experiments demonstrate that all metrics exhibit negligible correlation with the extrinsic evaluation of the downstream outcomes.
arXiv Detail & Related papers (2022-12-20T14:39:58Z) - DEMETR: Diagnosing Evaluation Metrics for Translation [21.25704103403547]
We release DEMETR, a diagnostic dataset with 31K English examples.
We find that learned metrics perform substantially better than string-based metrics on DEMETR.
arXiv Detail & Related papers (2022-10-25T03:25:44Z) - MENLI: Robust Evaluation Metrics from Natural Language Inference [26.53850343633923]
Recently proposed BERT-based evaluation metrics for text generation perform well on standard benchmarks but are vulnerable to adversarial attacks.
We develop evaluation metrics based on Natural Language Inference (NLI)
We show that our NLI based metrics are much more robust to the attacks than the recent BERT-based metrics.
arXiv Detail & Related papers (2022-08-15T16:30:14Z) - SMART: Sentences as Basic Units for Text Evaluation [48.5999587529085]
In this paper, we introduce a new metric called SMART to mitigate such limitations.
We treat sentences as basic units of matching instead of tokens, and use a sentence matching function to soft-match candidate and reference sentences.
Our results show that system-level correlations of our proposed metric with a model-based matching function outperforms all competing metrics.
arXiv Detail & Related papers (2022-08-01T17:58:05Z) - On the Intrinsic and Extrinsic Fairness Evaluation Metrics for
Contextualized Language Representations [74.70957445600936]
Multiple metrics have been introduced to measure fairness in various natural language processing tasks.
These metrics can be roughly categorized into two categories: 1) emphextrinsic metrics for evaluating fairness in downstream applications and 2) emphintrinsic metrics for estimating fairness in upstream language representation models.
arXiv Detail & Related papers (2022-03-25T22:17:43Z) - A Statistical Analysis of Summarization Evaluation Metrics using
Resampling Methods [60.04142561088524]
We find that the confidence intervals are rather wide, demonstrating high uncertainty in how reliable automatic metrics truly are.
Although many metrics fail to show statistical improvements over ROUGE, two recent works, QAEval and BERTScore, do in some evaluation settings.
arXiv Detail & Related papers (2021-03-31T18:28:14Z) - GO FIGURE: A Meta Evaluation of Factuality in Summarization [131.1087461486504]
We introduce GO FIGURE, a meta-evaluation framework for evaluating factuality evaluation metrics.
Our benchmark analysis on ten factuality metrics reveals that our framework provides a robust and efficient evaluation.
It also reveals that while QA metrics generally improve over standard metrics that measure factuality across domains, performance is highly dependent on the way in which questions are generated.
arXiv Detail & Related papers (2020-10-24T08:30:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.