論文の概要: Integrated Object Deformation and Contact Patch Estimation from
Visuo-Tactile Feedback
- arxiv url: http://arxiv.org/abs/2305.14470v1
- Date: Tue, 23 May 2023 18:53:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-25 23:56:38.968210
- Title: Integrated Object Deformation and Contact Patch Estimation from
Visuo-Tactile Feedback
- Title(参考訳): visuo-tactileフィードバックによる統合物体変形と接触パッチ推定
- Authors: Mark Van der Merwe, Youngsun Wi, Dmitry Berenson, Nima Fazeli
- Abstract要約: 本稿では,ビジュオ触覚フィードバックからオブジェクトの変形と接触パッチを共同でモデル化する表現を提案する。
我々は,NDCFを学習するためのニューラルネットワークアーキテクチャを提案し,シミュレーションデータを用いて学習する。
我々は,学習したNDCFが微調整を必要とせず,直接現実世界に転送されることを実証した。
- 参考スコア(独自算出の注目度): 8.420670642409219
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reasoning over the interplay between object deformation and force
transmission through contact is central to the manipulation of compliant
objects. In this paper, we propose Neural Deforming Contact Field (NDCF), a
representation that jointly models object deformations and contact patches from
visuo-tactile feedback using implicit representations. Representing the object
geometry and contact with the environment implicitly allows a single model to
predict contact patches of varying complexity. Additionally, learning geometry
and contact simultaneously allows us to enforce physical priors, such as
ensuring contacts lie on the surface of the object. We propose a neural network
architecture to learn a NDCF, and train it using simulated data. We then
demonstrate that the learned NDCF transfers directly to the real-world without
the need for fine-tuning. We benchmark our proposed approach against a baseline
representing geometry and contact patches with point clouds. We find that NDCF
performs better on simulated data and in transfer to the real-world.
- Abstract(参考訳): 物体の変形と接触による力伝達の相互作用に関する推論は、適合物体の操作の中心となる。
本稿では,暗黙の表現を用いた視覚触覚フィードバックからオブジェクトの変形と接触パッチを共同でモデル化するニューラルデフォーミング接触場(NDCF)を提案する。
オブジェクトの幾何学を表現し、環境との接触は暗黙的に1つのモデルで様々な複雑さの接触パッチを予測できる。
さらに、幾何学と接触を同時に学習することで、物体の表面上の接触を保証するなど、物理的な先行を強制することができる。
我々は,NDCFを学習するためのニューラルネットワークアーキテクチャを提案し,シミュレーションデータを用いて学習する。
次に、学習したNDCFが微調整を必要とせず、直接現実世界に転送されることを実証する。
提案手法は,ジオメトリを表すベースラインとポイントクラウドとの接触パッチに対してベンチマークを行う。
シミュレーションデータや実世界への転送において,NDCFの方が優れていることがわかった。
関連論文リスト
- Dynamic Reconstruction of Hand-Object Interaction with Distributed Force-aware Contact Representation [52.36691633451968]
ViTaM-Dは動的手動物体相互作用再構成のための視覚触覚フレームワークである。
DF-Fieldは分散力認識型接触表現モデルである。
剛性および変形性のある物体再構成におけるViTaM-Dの優れた性能について検討した。
論文 参考訳(メタデータ) (2024-11-14T16:29:45Z) - Boosting Cross-Domain Point Classification via Distilling Relational Priors from 2D Transformers [59.0181939916084]
従来の3Dネットワークは主に局所幾何学的詳細に焦点を当て、局所幾何学間の位相構造を無視する。
そこで本稿では,大規模画像上においてよく訓練されたトランスフォーマーから前駆体を抽出する,新しい先駆体蒸留法を提案する。
PointDA-10とSim-to-Realデータセットの実験は、提案手法が点クラウド分類におけるUDAの最先端性能を一貫して達成していることを検証する。
論文 参考訳(メタデータ) (2024-07-26T06:29:09Z) - Physics-Encoded Graph Neural Networks for Deformation Prediction under
Contact [87.69278096528156]
ロボット工学では、触覚相互作用における物体の変形を理解することが不可欠である。
本稿では,物理符号化グラフニューラルネットワーク(GNN)を用いた予測手法を提案する。
コードとデータセットを公開して、ロボットシミュレーションと把握の研究を進めました。
論文 参考訳(メタデータ) (2024-02-05T19:21:52Z) - Decaf: Monocular Deformation Capture for Face and Hand Interactions [77.75726740605748]
本稿では,単眼のRGBビデオから人間の顔と対話する人間の手を3Dで追跡する手法を提案する。
動作中の非剛性面の変形を誘発する定形物体として手をモデル化する。
本手法は,マーカーレスマルチビューカメラシステムで取得した現実的な顔変形を伴う手動・インタラクションキャプチャーデータセットに頼っている。
論文 参考訳(メタデータ) (2023-09-28T17:59:51Z) - Nonrigid Object Contact Estimation With Regional Unwrapping Transformer [16.988812837693203]
手と非剛体物体の間の接触パターンの獲得は、ビジョンとロボティクスのコミュニティにおいて共通の関心事である。
既存の学習ベースの手法は、モノクル画像からの厳密なものとの接触をより重視する。
RUPと呼ばれる新しいハンドオブジェクト接触表現を提案する。これは、推定されたハンドオブジェクト表面を複数の高分解能な2次元領域プロファイルとして解放する。
論文 参考訳(メタデータ) (2023-08-27T11:37:26Z) - Visual-Tactile Sensing for In-Hand Object Reconstruction [38.42487660352112]
我々は、視覚触覚による手動オブジェクト再構成フレームワーク textbfVTacO を提案し、手動オブジェクト再構成のために textbfVTacOH に拡張する。
シミュレーション環境であるVT-Simは、剛性オブジェクトと変形可能なオブジェクトの両方のハンドオブジェクトインタラクションの生成をサポートする。
論文 参考訳(メタデータ) (2023-03-25T15:16:31Z) - Stability-driven Contact Reconstruction From Monocular Color Images [7.427212296770506]
物理的接触は、手動状態の復元にさらなる制約を与える。
既存の手法では、接触ラベル付きデータセットから距離閾値または事前に駆動される手動接触を最適化する。
我々のキーとなる考え方は、単分子画像から直接接触パターンを再構築し、シミュレーションの物理的安定性基準を利用して最適化することである。
論文 参考訳(メタデータ) (2022-05-02T12:23:06Z) - Elastic Tactile Simulation Towards Tactile-Visual Perception [58.44106915440858]
触覚シミュレーションのための粒子の弾性相互作用(EIP)を提案する。
EIPは、触覚センサを協調粒子群としてモデル化し、接触時の粒子の変形を制御するために弾性特性を適用した。
さらに,触覚データと視覚画像間の情報融合を可能にする触覚知覚ネットワークを提案する。
論文 参考訳(メタデータ) (2021-08-11T03:49:59Z) - Locally Aware Piecewise Transformation Fields for 3D Human Mesh
Registration [67.69257782645789]
本論文では,3次元変換ベクトルを学習し,提案空間内の任意のクエリ点をリザーブ空間内の対応する位置にマップする部分変換場を提案する。
パラメトリックモデルにネットワークのポーズを合わせることで、特に極端なポーズにおいて、より優れた登録品質が得られることを示す。
論文 参考訳(メタデータ) (2021-04-16T15:16:09Z) - Tactile Object Pose Estimation from the First Touch with Geometric
Contact Rendering [19.69677059281393]
本稿では, 既知物体に対する第1タッチからの触覚ポーズ推定手法を提案する。
実際の触覚観測から接触形状への物体認識マップを作成する。
既知の幾何を持つ新しい物体に対して、シミュレーションで完全に調整された知覚モデルを学ぶ。
論文 参考訳(メタデータ) (2020-12-09T18:00:35Z) - Learning the sense of touch in simulation: a sim-to-real strategy for
vision-based tactile sensing [1.9981375888949469]
本稿では,3次元接触力分布の再構成を目的とした,視覚に基づく触覚センサについて述べる。
シミュレーションデータから完全に調整されたディープニューラルネットワークをトレーニングするための戦略が提案されている。
結果として得られる学習アーキテクチャは、さらなるトレーニングをすることなく、複数の触覚センサ間で直接転送可能であり、実際のデータに対して正確な予測が得られます。
論文 参考訳(メタデータ) (2020-03-05T14:17:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。